Skip to main content
Log in

Microstructure and Mechanical Properties of Friction Stir Welded 5083 and 7075 Aluminum Alloys

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

Through microscopy, mechanical testing, and numerical modeling, the microstructure and mechanical performance of friction stir welded aluminum alloys 7075-T651 and 5083-H111 were characterized. In particular, the influence of the weld configuration, i.e., the locations of the 7075 and 5083 alloys alternately on the advancing and retreating sides, on material flow, microstructure, and mechanical properties was considered. Thermographic data in conjunction with a process simulation demonstrated that the weld configuration significantly impacts heat generation during friction stir welding. The microstructure in the stir zone was a clear visualization of the material flow and was characterized by a vortex-like structure with alternating bands of the alloys being joined. These bands differed in elemental content and grain size. The microstructure became more complex when greater heat generation (higher temperatures) occurred. The weld configuration strongly influenced the material flow, but did not impact the tensile properties (such as yield strength, tensile strength, and elongation). The configuration of 5083 on the advancing side and 7075 on the retreating side produced the most uniform material flow. The joint efficiencies of all tested welds were above 100%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. S.N. Pandya and J.V. Menghani, Friction Stir Welding of Dissimilar 5xxx to 6xxx Al Alloys: A Review, Appl. Mech. Mater., 2013, 376, p 42–48

    Article  Google Scholar 

  2. M.B. Uday, M.N. Ahmad Fauzi, H. Zuhailawati, and A.B. Ismail, Advances in Friction Welding Process: A Review, Sci. Technol. Weld. Join., 2010, 15(4), p 534–558

    Article  Google Scholar 

  3. P.L. Threadgill, A.J. Leonard, H.R. Shercliff, and P.J. Withers, Friction Stir Welding Of Aluminium Alloys, Int. Mater. Rev., 2009, 54(2), p 49–93

    Article  Google Scholar 

  4. T. DebRoy and H.K.D.H. Bhadeshia, Friction Stir Welding Of Dissimilar Alloys—A Perspective, Sci. Technol. Weld. Join., 2010, 15(4), p 266–270

    Article  Google Scholar 

  5. L.E. Murr, A Review of FSW Research on Dissimilar Metal and Alloy Systems, J. Mater. Eng. Perform., 2010, 19(8), p 1071–1089

    Article  Google Scholar 

  6. N. Kumar, W. Yuan, and R.S. Mishra, Friction Stir Welding of Dissimilar Alloys and Materials, Elsevier, Oxford, 2015

    Book  Google Scholar 

  7. S.K. Park, S.T. Hong, J.H. Park, K.Y. Park, Y.J. Kwon, and H.J. Son, Effect of Material Locations on Properties of Friction Stir Welding Joints of Dissimilar Aluminium Alloys, Sci. Technol. Weld. Join., 2010, 15(4), p 331–336

    Article  Google Scholar 

  8. J.F. Guo, H.C. Chen, C.N. Sun, G. Bi, Z. Sun, and J. Wei, Friction stir welding of dissimilar materials between AA6061 and AA7075 Al alloys effects of process parameters, Mater. Des., 2014, 56(4), p 185–192

    Article  Google Scholar 

  9. Md Reza-E-Rabby, W. Tang, and A.P. Reynolds, Effect of tool pin features on process response variables during friction stir welding of dissimilar aluminum alloys, Sci. Technol. Weld. Join., 2015, 20(5), p 425–432

    Article  Google Scholar 

  10. W.B. Lee, Y.M. Yeon, and S.B. Jung, The joint properties of dissimilar formed Al alloys by friction stir welding according to the fixed location of materials, Scripta Mater., 2003, 49(5), p 423–428

    Article  Google Scholar 

  11. E.G. Cole, A. Fehrenbacher, N.A. Duffe, M.R. Zinn, F.E. Pfefferkorn, and N.J. Ferrier, Weld Temperature Effects During Friction Stir Welding of Dissimilar Aluminum Alloys 6061-T6 and 7075-T6, Int. J. Adv. Manuf. Tech., 2014, 71(1), p 643–652

    Article  Google Scholar 

  12. Sato, Y. S., Kurihara, Y., Kokawa, H., Microstructural Characteristics of Dissimilar Butt Friction Stir Welds of AA7075 and AA2024, Proceedings of 6th International FSW Symposium, St-Sauveur, Canada, 2006, CD-ROM.

  13. S.T. Amancio-Filho, S. Sheikhi, J.F. dos Santos, and C. Bolfarini, Preliminary Study on the Microstructure and Mechanical Properties of Dissimilar Friction Stir Welds in Aircraft Aluminium Alloys 2024-T351 and 6056-T4, J. Mater. Process. Tech., 2008, 206(1–3), p 132–142

    Article  Google Scholar 

  14. K. Mroczka, A. Wójcicka, and A. Pietras, Characteristics of Dissimilar FSW Welds of Aluminum Alloys 2017A and 7075 on the Basis of Multiple Layer Research, J. Mater. Eng. Perform., 2013, 22(9), p 2698–2705

    Article  Google Scholar 

  15. M. Koilraj, V. Sundareswaran, S. Vijayan, and S.R.K. Rao, Friction Stir Welding of Dissimilar Aluminum Alloys AA2219 to AA5083—Optimization of Process Parameters Using Taguchi Technique, Mater. Des., 2012, 42(12), p 1–7

    Article  Google Scholar 

  16. I. Dinaharan, K. Kalaiselvan, S.J. Vijay, and P. Raja, Effect of Material Location and Tool Rotation Speed on Microstructure and Tensile Strength of Dissimilar Friction Stir Welded Aluminum Alloys, Arch. Civ. Mech. Eng., 2012, 12(4), p 446–454

    Article  Google Scholar 

  17. M.H. Shojaeefard, R.A. Behnagh, M. Akbari, M.K.B. Givi, and F. Farhani, Modelling and Pareto Optimization of Mechanical Properties of Friction Stir Welded AA7075/AA5083 Butt Joints Using Neural Network and Particle Swarm Algorithm, Mater. Des., 2013, 44(2), p 190–198

    Article  Google Scholar 

  18. M. Saeidi, B. Manafi, M.K.B. Givi, and G. Faraji, Mathematical Modeling and Optimization of Friction Stir Welding Process Parameters in AA5083 and AA7075 Aluminum Alloy Joints, P. I. Mech. Eng. B-J. Eng. Manuf., 2016, 230, p 1284–1294

    Article  Google Scholar 

  19. M. Węglowski and S. Dymek, Microstructural Modification of Cast Aluminium Alloy AlMg9Si via Friction Modified Processing, Arch. Metall. Mater., 2012, 57(1), p 71–78

    Google Scholar 

  20. M.S. Węglowski, A. Pietras, S. Dymek, and C. Hamilton, Characterization of Friction Modified Processing—A Novel Tool for Enhancing Surface Properties in Cast Aluminium Alloys, Key Eng. Mater., 2012, 504–506, p 1231–1236

    Article  Google Scholar 

  21. C. Hamilton, M. Kopyściański, O. Senkov, and S. Dymek, A Coupled Thermal/Material Flow Model of Friction Stir Welding Applied to Sc-Modified Aluminum Alloys, Metall. Mater. Trans. A, 2013, 44(4), p 1730–1740

    Article  Google Scholar 

  22. J.C. Lee, S.H. Lee, S.W. Kim, D.Y. Hwang, D.H. Shin, and S.W. Lee, The Thermal Behavior of Aluminum 5083 Alloys Deformed by Equal Channel Angular Pressing, Thermochim. Acta, 2010, 499(1–2), p 100–105

    Article  Google Scholar 

  23. G.F. Hewitt, Ed., Heat Exchanger Design Handbook, Begell House, New York, 2008.

  24. P.A. Colegrove and H.R. Shercliff, Experimental and Numerical Analysis of Aluminium alloy 7075-T7351 Friction Stir Welds, Sci. Technol. Weld. Join., 2003, 8(5), p 360–368

    Article  Google Scholar 

  25. C. Hamilton, M.S. Węglowski, and S. Dymek, A Simulation of Friction Stir Processing for Temperature and Material Flow, Metal. Mater. Trans. B, 2015, 46(3), p 1409–1418

    Article  Google Scholar 

  26. K.E. Tello, A.P. Gerlich, and P.F. Mendez, Constants for Hot Deformation Constitutive Models for Recent Experimental Data, Sci. Technol. Weld. Join., 2010, 15(3), p 260–266

    Article  Google Scholar 

  27. C. Hamilton, S. Dymek, and A. Sommers, A Thermal Model of Friction Stir Welding in Aluminum Alloys, Int. J. Mach. Tool. Manu., 2008, 48(10), p 1120–1130

    Article  Google Scholar 

  28. I. Kalemba, C. Hamilton, and S. Dymek, Natural Aging in Friction Stir Welded 7136-T76 Aluminum Alloy, Mater. Des., 2014, 60(8), p 295–301

    Article  Google Scholar 

  29. C. Hamilton, M. Kopyściański, A. Węglowska, S. Dymek, and A. Pietras, A Numerical Simulation for Dissimilar Aluminum Alloys Joined by Friction Stir Welding, Metal. Mater. Trans. A, 2016, 47(9), p 4519–4529

    Article  Google Scholar 

  30. A.A.M. da Silva, E. Arruti, G. Janeiro, E. Aldanondo, P. Alvarez, and A. Echeverria, Material Flow and Mechanical Behavior of Dissimilar AA2024-T3 and AA7075-T6 Aluminum Alloys Friction Stir Welds, Mater. Des., 2011, 32(4), p 2021–2027

    Article  Google Scholar 

  31. T. Sheppard and D. Wright, Determination of flow-stress. 1. Constitutive equation for aluminum-alloys at elevated temperatures, Met. Technol., 1979, 6(1), p 215–223

    Article  Google Scholar 

  32. M.A. Wells, D.M. Maijer, S. Jupp, G. Lockhart, and M.R. van der Winden, Mathematical Model of Deformation and Microstructural Evolution During Hot Rolling of Aluminum Alloy 5083, Mater. Sci. Technol., 2003, 19(4), p 467–476

    Article  Google Scholar 

  33. R. Zhu, Q. Liu, J. Li, S. Xiang, Y. Chen, and X. Zhang, Dynamic Restoration Mechanism and Physically Based Constitutive Model of 2050 Al-Li alloy During Hot Compression, J. Alloy. Compd., 2015, 650, p 75–85

    Article  Google Scholar 

  34. I. Kalemba, S. Dymek, C. Hamilton, and M. Blicharski, Microstructure and Mechanical Properties of Friction Stir Welded 7136-T76 Aluminium Alloy, Mater. Sci. Technol., 2011, 27(5), p 903–908

    Article  Google Scholar 

  35. K. Krasnowski, C. Hamilton, and S. Dymek, Influence of the Tool Shape and Weld Configuration on Microstructure and Mechanical Properties of the Al 6082 alloy FSW Joints, Arch. Civ. Mech. Eng., 2015, 15(1), p 133–141

    Article  Google Scholar 

  36. R. Priya, V.S. Sarma, and K.P. Rao, Effect of Post Weld Heat Treatment on the Microstructure and Tensile Properties of Dissimilar Friction Stir Welded AA 2219 and AA 6061 Alloys, T. Indian I. Metals, 2009, 62(1), p 11–19

    Article  Google Scholar 

  37. I.J. Polmear, Light Alloys—Metallurgy of the Light Metals, Halsted Press, Canberra, 1996

    Google Scholar 

  38. C. Shi, J. Lai, and X. Chen, Microstructural Evolution and Dynamic Softening Mechanisms of Al-Zn-Mg-Cu Alloy During Hot Compressive Deformation, Materials, 2014, 7(1), p 244–264

    Article  Google Scholar 

  39. W. Blum, Q. Zhu, R. Merkel, and H.J. McQueen, Geometric Dynamic Recrystallization in Hot Torsion of Al-5 Mg-0.6Mn (AA5083), Mater. Sci. Eng. A, 1996, 205(1–2), p 23–30

    Article  Google Scholar 

  40. A.L. Etter, T. Baudin, N. Fredj, and R. Penelle, Recrystallization Mechanisms in 5251 H14 and 5251 O Aluminum Friction Stir Welds, Mater. Sci. Eng. A, 2007, 445–446, p 94–99

    Article  Google Scholar 

  41. S.A. Khodir and T. Shibayanagi, Microstructure and Mechanical Properties of Friction Stir Welded Dissimilar Aluminum Joints of AA2024-T3 and AA7075-T6, Mater. Trans., 2007, 48(7), p 1928–1937

    Article  Google Scholar 

  42. S. Serajzadeh, S. Ranjbar Motlagh, S.M.H. Mirbagher, and J.M. Akhgar, Deformation Behavior of AA2017-SiCp in Warm and Hot Deformation Regions, Mater. Des., 2015, 67(2), p 318–323

    Article  Google Scholar 

Download references

Acknowledgments

This research project was financed by the Polish National Science Centre (No: DEC-2012/07/D/ST8/02737).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Hamilton.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kalemba-Rec, I., Hamilton, C., Kopyściański, M. et al. Microstructure and Mechanical Properties of Friction Stir Welded 5083 and 7075 Aluminum Alloys. J. of Materi Eng and Perform 26, 1032–1043 (2017). https://doi.org/10.1007/s11665-017-2543-8

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-017-2543-8

Keywords

Navigation