Skip to main content
Log in

A Study on the Synergistic Effect of ECAP and Aging Treatment on the Mechanical Properties of AA6082

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

In this study, the synergistic effect of equal-channel angular pressing (ECAP) and aging temperature-time on the mechanical properties of AA6082 has been investigated. The treatments include post-ECAP artificial aging and dynamic aging which was achieved by ECAP processing at 140 °C to 1 pass. It was observed that both routes were effective in enhancing the strength of the alloy. The Vickers microhardness measurements were recorded at three different aging temperatures with varying time intervals. The hardness values of the ECAP-processed alloy to 1 and 2 passes, followed by artificial peak aging was found to be 112.3 and 130 Hv, respectively. Compared to the yield strength of solution-treated alloy, the synergistic effect of ECAP processing to 1 pass and 2 passes followed by artificial aging has resulted in an increase in the yield strength of the alloy by 140 and 183%, respectively. The dynamic aging resulted in an overall increase in the yield strength of the alloy by 177%. The correlation from the modified Johnson-Cook model was close to the observed experimental responses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. R. Valiev, Nanostructuring of Metals by Severe Plastic Deformation for Advanced Properties, Nat. Mater., 2004, 3, p 511–516

    Article  Google Scholar 

  2. A. Azushima, R. Kopp, A. Korhonen, D. Yang, F. Micari, P. Groche, J. Yanagimoto, N. Tsuji, and A. Rosochowski, Severe Plastic Deformation (SPD) Processes for Metals, CIRP Anal. Manuf. Technol., 2008, 57, p 716–735

    Article  Google Scholar 

  3. M. Baig, E. El-Danaf, and J.A. Mohammad, Thermo-Mechanical Responses of an Aluminum Alloy Processed by Equal Channel Angular Pressing, Mater. Des., 2014, 57, p 510–519

    Article  Google Scholar 

  4. J.C. Lee, J.Y. Shu, and J.P. Ahn, Work-Softening Behavior of the Ultrafine-Grained Al Alloy Processed by High-Strain-Rate, Dissimilar-Channel Angular Pressing, Metall. Mater. Trans. A, 2003, 34, p 625–632

    Article  Google Scholar 

  5. K.T. Park, H.J. Lee, C.S. Lee, and D.H. Shin, Effect of Post-Rolling After ECAP on Deformation Behavior of ECAPed Commercial Al–Mg Alloy at 723K, Mater. Sci. Eng. A, 2005, 393, p 118–124

    Article  Google Scholar 

  6. V. Segal, Severe Plastic Deformation: Simple Shear Versus Pure Shear, Mater. Sci. Eng. A, 2002, 338, p 331–344

    Article  Google Scholar 

  7. M.S. Soliman, E.A. El-Danaf, and A.A. Almajid, Enhancement of Static and Fatigue Strength of 1050 Al Processed by Equal-Channel Angular Pressing Using Two Routes, Mater. Sci. Eng. A, 2012, 532, p 120–129

    Article  Google Scholar 

  8. R.Z. Valiev, Y. Estrin, Z. Horita, T.G. Langdon, M.J. Zechetbauer, and Y.T. Zhu, Producing Bulk Ultrafine-Grained Materials by Severe Plastic Deformation, JOM, 2006, 58, p 33–39

    Article  Google Scholar 

  9. M. Janeček, J. Čížek, J. Stráský, K. Václavová, P. Hruška, V. Polyakova, S. Gatina, and I. Semenova, Microstructure Evolution in Solution Treated Ti15Mo Alloy Processed by High Pressure Torsion, Mat. Charact., 2014, 98, p 233–240

    Article  Google Scholar 

  10. E.A. El-Danaf, M.M. El-Rayes, and M.S. Soliman, Friction Stir Processing: An Effective Technique to Refine Grain Structure and Enhance Ductility, Mater. Des., 2010, 31, p 1231–1236

    Article  Google Scholar 

  11. R. Sathiskumar, N. Murugan, I. Dinaharan, and S. Vijay, Characterization of Boron Carbide Particulate Reinforced In Situ Copper Surface Composites Synthesized Using Friction Stir Processing, Mater. Char., 2013, 84, p 16–27

    Article  Google Scholar 

  12. K. Suresh, S. Sinha, A. Chaudhary, and S. Suwas, Development of Microstructure and Texture in Copper During Warm Accumulative Roll Bonding, Mater. Charact., 2012, 70, p 74–82

    Article  Google Scholar 

  13. R.Z. Valiev and T.G. Langdon, Principles of Equal-Channel Angular Pressing as a Processing Tool for Grain Refinement, Prog. Mater. Sci., 2006, 51, p 881–981

    Article  Google Scholar 

  14. M. Vedani, G. Angella, P. Bassani, D. Ripamonti, and A. Tuissi, DSC Analysis of Strengthening Precipitates in Ultrafine Al–Mg–Si Alloys, J. Ther. Anal. Calorim., 2007, 87, p 277–284

    Article  Google Scholar 

  15. M. Murayama and K. Hono, Pre-precipitate Clusters and Precipitation Processes in Al–Mg–Si Alloys, Acta Mater., 1999, 47, p 1537–1548

    Article  Google Scholar 

  16. G. Sha, K. O’Reilly, B. Cantor, J. Titchmarsh, and R. Hamerton, Quasi-Peritectic Solidification Reactions in 6xxx Series Wrought Al Alloys, Acta Mater., 2003, 51, p 1883–1897

    Article  Google Scholar 

  17. M. Werinos, H. Antrekowitsch, T. Ebner, R. Prillhofer, P.J. Uggowitzer, and S. Pogatscher, Hardening of Al–Mg–Si Alloys: Effect of Trace Elements and Prolonged Natural Aging, Mater. Des., 2016, 107, p 257–268

    Google Scholar 

  18. M. Werinos, H. Antrekowitsch, E. Kozeschnik, T. Ebner, F. Moszner, J.F. Löffler, P.J. Uggowitzer, and S. Pogatscher, Ultrafast Artificial Aging of Al–Mg–Si Alloys, Scr. Mater., 2016, 112, p 148–151

    Article  Google Scholar 

  19. V. Fallah, B. Langelier, N. Ofori-Opoku, B. Raeisinia, N. Provatas, and S. Esmaeili, Cluster Evolution Mechanisms During Aging in Al–Mg–Si Alloys, Acta Mater., 2016, 103, p 290–300

    Article  Google Scholar 

  20. M.W. Zandbergen, Q. Xu, A. Cerezo, and G.D.W. Smith, Study of Precipitation in Al–Mg–Si Alloys by Atom Probe Tomography I. Microstructural Changes as a Function of Ageing Temperature, Acta Mater., 2015, 101, p 136–148

    Article  Google Scholar 

  21. E.A. El-Danaf and M. Baig, High Temperature Deformation Characteristics of Equal Channel Angular Pressed AA6082-T6, Mater. Sci. Eng. A, 2013, 565, p 301–307

    Article  Google Scholar 

  22. K. Matsuda, T. Naoi, K. Fujii, Y. Uetani, T. Sato, A. Kamio, and S. Ikeno, Crystal Structure of the β″ Phase in an Al–l. 0mass% Mg 2 Si–0.4 mass% Si Alloy, Mater. Sci. Eng. A, 1999, 262, p 232–237

    Article  Google Scholar 

  23. M.S. Oskooie, H. Asgharzadeh, and H. Kim, Microstructure, Plastic Deformation and Strengthening Mechanisms of an Al–Mg–Si Alloy with a Bimodal Grain Structure, J. Alloys Cmpd., 2015, 632, p 540–548

    Article  Google Scholar 

  24. M. Starink, L. Cao, and P. Rometsch, A Model for the Thermodynamics of and Strengthening Due to Co-clusters in Al–Mg–Si-Based Alloys, Acta Mater., 2012, 60, p 4194–4207

    Article  Google Scholar 

  25. W. Miao and D. Laughlin, Precipitation Hardening in Aluminum Alloy 6022, Scr. Mater., 1999, 40, p 873–878

    Article  Google Scholar 

  26. W. Miao and D. Laughlin, A Differential Scanning Calorimetry Study of Aluminum Alloy 6111 with Different Pre-aging Treatments, J. Mat. Sci. Let., 2000, 19, p 201–203

    Article  Google Scholar 

  27. S. Urreta, F. Louchet, and A. Ghilarducci, Fracture Behaviour of an Al–Mg–Si Industrial Alloy, Mater. Sci. Eng. A, 2001, 302, p 300–307

    Article  Google Scholar 

  28. A. Gupta, D. Lloyd, and S. Court, Precipitation Hardening in Al–Mg–Si Alloys with and Without Excess Si, Mater. Sci. Eng. A, 2001, 316, p 11–17

    Article  Google Scholar 

  29. K. Matsuda, Y. Sakaguchi, Y. Miyata, Y. Uetani, T. Sato, A. Kamio, and S. Ikeno, Precipitation Sequence of Various Kinds of Metastable Phases in Al-1.0 mass% Mg2Si-0.4 mass% Si Alloy, J Mat. Sci., 2000, 35, p 179–189

    Article  Google Scholar 

  30. L. Zhen, W.D. Fei, S. Kang, and H. Kim, Precipitation Behaviour of Al–Mg–Si Alloys with High Silicon Content, J. Mater. Sci., 1997, 32, p 1895–1902

    Article  Google Scholar 

  31. R.Z. Valiev, N. Krasilnikov, and N. Tsenev, Plastic Deformation of Alloys with Submicron-Grained Structure, Mater. Sci. Eng. A, 1991, 137, p 35–40

    Article  Google Scholar 

  32. M. Baig, A.S. Khan, S.H. Choi, and A. Jeong, Shear and Multiaxial Responses of Oxygen Free High Conductivity (OFHC) Copper Over Wide Range of Strain-Rates and Temperatures and Constitutive Modeling, Int. J. Plast., 2013, 40, p 65–80

    Article  Google Scholar 

  33. G.R. Johnson, W.H. Cook, A Constitutive Model and Data for Metals Subjected to Large Strains, High Strain Rates and High Temperatures, in Proceedings of the 7th International Symposium on Ballistics, pp. 541–547

  34. G.R. Johnson and W.H. Cook, Fracture Characteristics of Three Metals Subjected to Various Strains, Strain Rates, Temperatures and Pressures, Eng. Fract. Mech., 1985, 21, p 31–48

    Article  Google Scholar 

  35. E.A. El-Danaf, Mechanical Properties, Microstructure and Texture of Single Pass Equal Channel Angular Pressed 1050, 5083, 6082 and 7010 Aluminum Alloys with Different Dies, Mater. Des., 2011, 32, p 3838–3853

    Article  Google Scholar 

Download references

Acknowledgment

This project was funded by the National Plan for Science, Technology and Innovation (MAARIFAH), King Abdulaziz City for Science and Technology, Kingdom of Saudi Arabia, Award Number (10-ADV1032-02).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Muneer Baig.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Baig, M., El-Danaf, E. & Mohammed, J.A. A Study on the Synergistic Effect of ECAP and Aging Treatment on the Mechanical Properties of AA6082. J. of Materi Eng and Perform 25, 5252–5261 (2016). https://doi.org/10.1007/s11665-016-2385-9

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-016-2385-9

Keywords

Navigation