Skip to main content
Log in

Hot Deformation Characteristics of 13Cr-4Ni Stainless Steel Using Constitutive Equation and Processing Map

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

Hot compression tests were performed to study the hot deformation characteristics of 13Cr-4Ni stainless steel. The tests were performed in the strain rate range of 0.001-10 s−1 and temperature range of 900-1100 °C using Gleeble® 3800 simulator. A constitutive equation of Arrhenius type was established based on the experimental data to calculate the different material constants, and average value of apparent activation energy was found to be 444 kJ/mol. Zener-Hollomon parameter, Z, was estimated in order to characterize the flow stress behavior. Power dissipation and instability maps developed on the basis of dynamic materials model for true strain of 0.5 show optimum hot working conditions corresponding to peak efficiency range of about 28-32%. These lie in the temperature range of 950-1025 °C and corresponding strain rate range of 0.001-0.01 s−1 and in the temperature range of 1050-1100 °C and corresponding strain rate range of 0.01-0.1 s−1. The flow characteristics in these conditions show dynamic recrystallization behavior. The microstructures are correlated to the different stability domains indicated in the processing map.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. J.F. Santa, L.A. Espitia, J.A. Blanco, S.A. Romo, and A. Toro, Slurry and Cavitation Erosion Resistance of Thermal Spray Coatings, Wear, 2009, 267, p 160–167

    Article  Google Scholar 

  2. D.C. Wen, Improvement of Slurry Erosion Resistance of Martensitic/Ferritic Duplex Stainless Steel by Hot Rolling, Met. Mater. Int. J., 2010, 16, p 13–19

    Article  Google Scholar 

  3. H.J. Amarendra, P. Kalhan, G.P. Chaudhari, S.K. Nath, and S. Kumar, Slurry Erosion Response of Heat-Treated 13Cr-4Ni Martensitic Stainless Steel, Mater. Sci. Forum, 2012, 710, p 500–505

    Article  Google Scholar 

  4. H.S. Grewal, H.S. Arora, H. Singh, and A. Agrawal, Surface Modification of Hydro Turbine Steel Using Friction Stir Processing, Appl. Surf. Sci., 2013, 268, p 547–555

    Article  Google Scholar 

  5. B. Kishor, G.P. Chaudhari, and S.K. Nath, Cavitation Erosion of Thermomechanically Processed 13/4 Martensitic Stainless Steel, Wear, 2014, 319, p 150–159

    Article  Google Scholar 

  6. B. Kishor, G.P. Chaudhari, and S.K. Nath, Slurry Erosion of Thermo-Mechanically Processed 13Cr4Ni Stainless Steel, Tribol. Int., 2016, 93, p 50–57

    Article  Google Scholar 

  7. Y.H. Xiao and C. Guo, Constitutive Modelling for High Temperature Behavior of Cr12Ni3Mo2VNbN Martensitic Steel, Mater. Sci. Eng. A, 2011, 528, p 5081–5087

    Article  Google Scholar 

  8. S.K. Rajput, M. Dikovits, G.P. Chaudhari, C. Poletti, F. Warchomicka, V. Pancholi, and S.K. Nath, Physical Simulation of Hot Deformation and Microstructural Evolution of AISI, 1016 Steel Using Processing Map, Mater. Sci. Eng. A, 2013, 587, p 291–300

    Article  Google Scholar 

  9. S.K. Rajput, G.P. Chaudhari, and S.K. Nath, Physical Simulation of Hot Deformation of Low-Carbon Ti-Nb Microalloyed Steel and Microstructural Studies, J. Mater. Eng. Perform, 2014, 23, p 2930–2942

    Article  Google Scholar 

  10. Z. Shi, X. Yan, and C. Dan, Characterization of Hot Deformation Behaviour of GH925 Super Alloy Using Constitutive Equation, Processing Map And Microstructure Observation, J. Alloys Compd., 2015, 652, p 30–38

    Article  Google Scholar 

  11. G. E. Dieter, H. A. Kuhn, and S. L. Semiatin, Handbook of Workability and Process Design, ISBN: 0-87170-778-0, Materials Park, OH: USA, 2003, p 151–152

  12. P. Suikkanen, Development and Processing of Low Carbon Bainitic Steels, Academic Dissertation, Acta Univ. Oul. C 340, Oulun Yliopisto, Oulu, 2009

  13. T. Gladman, The Physical Metallurgy of Microalloyed Steels, Book 615, The Institute of Materials, London, 1997, p 176–184

    Google Scholar 

  14. D. Samantaray, S. Mandal, and A.K. Bhaduri, Optimization of Hot Working Parameters for Thermo-Mechanical Processing of Modified 9Cr–1Mo (P91) Steel Employing Dynamic Materials Model, Mater. Sci. Eng. A, 2011, 528, p 5204–5211

    Article  Google Scholar 

  15. S. Venugopal, P. Venugopal, and S.L. Mannan, Optimisation of Cold and Warm Workability of Commercially Pure Titanium Using Dynamic Materials Model (DMM) Instability Maps, J. Mater. Process. Technol., 2008, 202, p 201–215

    Article  Google Scholar 

  16. A. Momeni, K. Dehghani, M. Heidari, and M. Vaseghi, Modeling the Flow Curve of AISI, 410 Martensitic Stainless Steel, J. Mater. Eng. Perform., 2012, 21, p 2238–2243

    Article  Google Scholar 

  17. A. Momeni and K. Dehghani, Characterization of Hot Deformation Behavior of 410 Martensitic Stainless Steel Using Constitutive Equations and Processing Maps, Mater. Sci. Eng. A, 2010, 527, p 5467–5473

    Article  Google Scholar 

  18. S. Venugopal and P.V. Sivaprasad, A Journey with Prasad’s Processing Maps, J. Mater. Eng. Perform., 2003, 12, p 674–686

    Article  Google Scholar 

  19. P.V. Sivaprasad and S. Venugopal, Instability Maps: An Aid to Tool Design, J. Mater. Eng. Perform., 2003, 12, p 656–660

    Article  Google Scholar 

  20. A. Marchattiwar, A. Sarkar, J.K. Chakravartty, and B.P. Kashyap, Dynamic Recrystallization during Hot Deformation of 304 Austenitic Stainless Steel, J. Mater. Eng. Perform., 2013, 22, p 2168–2175

    Google Scholar 

  21. S.V.S.N. Murty, B.N. Rao, and B.P. Kashyap, Identification of Flow Instabilities in the Processing Maps of AISI, 304 Stainless Steel, J. Mater. Process. Technol., 2005, 166, p 268–278

    Article  Google Scholar 

  22. S. Tan, Z. Wang, S. Cheng, Z. Liu, J. Han, and W. Fu, Processing Maps and Hot Workability of Super304H Austenitic Heat-Resistant Stainless Steel, Mater. Sci. Eng. A, 2009, 517, p 312–315

    Article  Google Scholar 

  23. G.R. Ebrahimi, H. Keshmiri, M. Mazinani, A. Maldar, and M. Haghshenas, Multi-Stage Thermomechanical Behaviour of AISI, 410 Martensitic Steel, Mater. Sci. Eng. A, 2013, 559, p 520–527

    Article  Google Scholar 

  24. Y.V.R.K. Prasad, H.L. Gegel, S.M. Doraivelu, J.C. Malas, J.T. Morgan, K.A. Lork, and D.R. Barker, Modelling of Dynamic Material Behaviour in Hot Deformation: Forging of Ti-6242, Metall. Trans. A, 1984, 15, p 1883–1892

    Article  Google Scholar 

  25. Y.V.R.K. Prasad, Processing Maps: A Status Report, J. Mater. Eng. Perform., 2013, 22, p 2867–2874

    Article  Google Scholar 

  26. ASTM E209, Annual Board of ASTM Standards. ASTM International 3, 2010

  27. L. Backe, Modeling the Microstructural Evolution During Hot Deformation of Microalloyed Steels, PhD. Thesis, Royal Institute of Technology Stockholm, 2009

  28. F. Ren, J. Chen, and F. Chen, Constitutive Modelling of Hot Deformation Behavior of X20Cr13 Martensitic Stainless Steel with Strain Effect, Trans. Nonferrous Met. Soc. China, 2014, 24, p 1407–1413

    Article  Google Scholar 

  29. H. Zhou, Hot Deformation and Processing Maps of As-Extruded Mg-9.8Gd-2.7Y-0.4Zr Mg Alloy, Mater. Sci. Eng. A, 2013, 576, p 101–107

    Article  Google Scholar 

  30. A. Momeni, S.M. Abbasi, and H. Badri, Hot Deformation Behavior and Constitutive Modelling of VCN200 Low Alloy Steel, Appl. Math. Model., 2012, 36, p 5624–5632

    Article  Google Scholar 

  31. H. Dehghani, S.M. Abbasi, A. Momeni, and A.K. Taheri, On the Constitutive Modelling and Microstructural Evolution of Hot Compressed A286 Iron-Base Super Alloy, J. Alloys Compd., 2013, 564, p 13–19

    Article  Google Scholar 

  32. C.M. Sellars and W.J. McTegart, On the Mechanism of Hot Deformation, Acta Metall., 1966, 14, p 1136–1138

    Article  Google Scholar 

  33. C. Zener and J.H. Hollomon, Effect of Strain upon Plastic Flow of Steel, J. Appl. Phys., 1944, 15, p 22–32

    Article  Google Scholar 

  34. H. Ziegler, Progress in Solid Mechanics, 4th ed., Wiley, New York, 1963, p 93

    Google Scholar 

  35. H.G. Sheng, H. Guangojier, W.L. Yun, and P. Fursheng, Processing Map for Hot Working of As Extruded AZ31B Magnesium Alloy, Trans. Nonferrous Met. Soc. China, 2005, 15, p 813–817

    Google Scholar 

  36. Y. Ninga, Z. Yaoa, H. Li, H. Guoa, Y. Taob, and Y. Zhang, High Temperature Deformation Behavior of Hot Isostatically Pressed P/M FGH4096 Super Alloy, Mater. Sci. Eng. A, 2010, 527, p 961–966

    Article  Google Scholar 

  37. Q.L. Pan, B. Li, Y. Zhang, and Z. Yin, Characterization of Hot Deformation Behavior Of Ni-Base Super Alloy Rene’41 Using Processing Map, Mater. Sci. Eng. A, 2013, 585, p 371–378

    Article  Google Scholar 

  38. Y.C. Lin and X.M. Chen, A Critical Review of Experimental Results and Constitutive Descriptions for Metals and Alloys in Hot Working, Mater. Des., 2011, 32, p 1733–1759

    Article  Google Scholar 

  39. C.H. Park, Y.G. Ko, C.S. Lee, K.T. Park, D.H. Shin, and H.S. Lee, High Temperature Deformation Behaviour of ELI, Grade Ti-6Al-4V Alloy with Martensite Microstructure, Mater. Sci. Forum, 2007, 551–552, p 365–372

    Article  Google Scholar 

  40. E. Pu, W. Zheng, J. Xiang, Z. Song, and J. Li, Hot Deformation Characteristic and Processing Map of Superaustenitic Stainless Steel S32654, Mater. Sci. Eng. A, 2014, 598, p 174–182

    Article  Google Scholar 

  41. A.S. Taylor and P.D. Hodgson, Dynamic Behaviour of 304 Stainless Steel During High Z Deformation, Mater. Sci. Eng. A, 2011, 528, p 3310–3320

    Article  Google Scholar 

  42. N.D. Ryan and H.J. McQueen, Hot Strength and Microstructural Evolution of 316 Stainless Steel During Simulated Multistage Deformation by Torsion, J. Mater. Process. Technol., 1993, 36, p 103–123

    Article  Google Scholar 

  43. D. Zou, Y. Han, D. Yan, D. Wang, W. Zhang, and G. Fan, Hot Workability of 00Cr13Ni5Mo2 Supermartensitic Stainless Steel, Mater. Des., 2011, 32, p 4443–4448

    Article  Google Scholar 

  44. A.M.J. Junior, Prediction of Steel Flow Stresses under Hot Working Conditions, Mater. Res., 2005, 3, p 1980–5373

    Google Scholar 

  45. G. Liu, Y. Han, Z. Shi, J. Sun, D. Zou, and G. Qiao, Hot Deformation and Optimization of Process Parameters of an As-Cast 6Mo Superaustenitic Stainless Steel: A Study with Processing Map, Mater. Des., 2014, 53, p 662–672

    Article  Google Scholar 

  46. F. Chen, Z.S. Cui, and D.S. Sui, Recrystallization of 30Cr2Ni4MoV Ultra-Super Critical Rotor Steel during Hot Deformation, Part III: Metadynamic Recrystallization, Mater. Sci. Eng. A, 2012, 540, p 46–54

    Article  Google Scholar 

Download references

Acknowledgments

The authors are grateful to the Department of Science and Technology, Ministry of Science and Technology, Government of India (Grant Number SR/S3/ME/0029/2009-(G)) for the research funding and FIST grant (Grant number SR/FST/ETI-216/2007) for procuring Gleeble® 3800. M/s. Vaishnav Steel Pvt. Ltd. Muzzafarnagar India is acknowledged for providing the steel.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. P. Chaudhari.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kishor, B., Chaudhari, G.P. & Nath, S.K. Hot Deformation Characteristics of 13Cr-4Ni Stainless Steel Using Constitutive Equation and Processing Map. J. of Materi Eng and Perform 25, 2651–2660 (2016). https://doi.org/10.1007/s11665-016-2159-4

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-016-2159-4

Keywords

Navigation