Skip to main content
Log in

Preparing Al-Mg Substrate for Thermal Spraying: Evaluation of Surface State After Different Pretreatments

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

The article deals with the pretreatment technique for preparing the surface of aluminum alloy EN AW 5754 before thermal spray. The surface after different pretreatments, including degreasing with acetone, chemical etching with acidic and alkali solutions, grit-blasting, cathodic cleaning, and some combinations of these techniques, has been studied. The investigation of pre-treated surfaces covered the topographical study (using scanning electron microscopy, atomic force microscopy, and 3D profilometry), the chemical analysis by x-ray photoelectron spectroscopy, the evaluation of surface wettability (sessile drop method), and the assessment of surface free energy. Compared with all the techniques used in present work, the cathodic cleaning and its combination with grit-blasting provide the most preferable chemistry of the surface. Due to the absence of hydroxides at the surface and, possible, due to the diffusion of magnesium to the surface of substrate, the surface wettability and the surface free energy have been significantly improved. No direct correlation between the surface topography and the surface wettability has been established.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. J.R. Davis (ed.), Coating Structure, Properties, and Materials, Handbook of Thermal Spray Technology (ASM International, Materials Park, 2004), pp. 47–53

  2. P.L. Fauchais, J.V.R. Heberlein, and M.I. Boulos, Thermal Spray Fundamentals: From Powder to Part, Springer, New York, 2004

    Google Scholar 

  3. C.C. Berndt and C.K. Lin, Measurement of Adhesion for Thermally Sprayed Materials, Adhesion Measurement of Films and Coatings, K.L. Mittal, Ed., VSP, Leiden, 1995, p 41–70

    Google Scholar 

  4. R.S.C. Paredes, S.C. Amico, and A.S.C.M. d’Oliveira, The Effect of Roughness and Pre-heating of the Substrate on the Morphology of Aluminium Coatings Deposited by Thermal Spraying, Surf. Coat. Technol., 2006, 200(9), p 3049–3055. doi:10.1016/j.surfcoat.2005.02.200

    Article  Google Scholar 

  5. P. Białucki and S. Kozerski, Study of Adhesion of Different Plasma-Sprayed Coatings to Aluminium, Surf. Coat. Technol., 2006, 201(5), p 2061–2064. doi:10.1016/j.surfcoat.2006.04.043

    Article  Google Scholar 

  6. L. Gu, X. Fan, Y. Zhao, B. Zou, Y. Wang, S. Zhao, and X. Cao, Influence of Ceramic Thickness on Residual Stress and Bonding Strength for Plasma Sprayed Duplex Thermal Barrier Coating on Aluminum Alloy, Surf. Coat. Technol., 2012, 206(21), p 4403–4410. doi:10.1016/j.surfcoat.2012.04.070

    Article  Google Scholar 

  7. Y. Tan, L. He, X. Wang, X. Hong, and W. Wang, Tribological Properties and Wear Prediction Model of TiC Particles Reinforced Ni-base Alloy Composite Coatings, Trans. Nonferrous Met. Soc. China, 2014, 24(8), p 2566–2573. doi:10.1016/S1003-6326(14)63384-7

    Article  Google Scholar 

  8. L. He, Y. Tan, H. Tan, C. Zhou, and L. Gao, Tribological Properties of Nanostructured Al2O3-40%TiO2 Multiphase Ceramic Particles Reinforced Ni-based Alloy Composite Coatings, Trans. Nonferrous Met. Soc. China, 2013, 23, p 2618–2627. doi:10.1016/S1003-6326(13)62776-4

    Article  Google Scholar 

  9. L. He, Y. Tan, X. Wang, T. Xu, and X. Hong, Microstructure and Wear Properties of Al2O3-CeO2/Ni-base Alloy Composite Coatings on Aluminum Alloys by Plasma Spray, Appl. Surf. Sci., 2014, 314, p 760–767. doi:10.1016/j.apsusc.2014.07.047

    Article  Google Scholar 

  10. L. He, Y. Tan, H. Tan, Y. Tu, and Z. Zhang, Microstructure and Tribological Properties of WC-CeO2/Ni-base Alloy Composite Coatings, Rare Met. Mater. Eng., 2014, 43(4), p 823–829. doi:10.1016/S1875-5372(14)60092-8

    Article  Google Scholar 

  11. M.F. Morksa, Y. Tsunekawa, N.F. Fahim, and M. Okumiya, Microstructure and Friction Properties of Plasma Sprayed Al-Si Alloyed Cast Iron Coatings, Mater. Chem. Phys., 2006, 96(1), p 170–175. doi:10.1016/j.matchemphys.2005.07.002

    Article  Google Scholar 

  12. K. Nakata and M. Ushio, Wear Resistance of Plasma Sprayed Al-Si Binary Alloy Coatings on A6063 Al Alloy Substrate, Surf. Coat. Technol., 2001, 142–144, p 277–282. doi:10.1016/S0257-8972(01)01088-X

    Article  Google Scholar 

  13. K. Nakata and M. Ushio, Effect of Fe Content on Wear Resistance of Thermal-Sprayed Al-17Si-XFe Alloy Coating on A6063 Al Alloy Substrate, Surf. Coat. Technol., 2003, 169–170, p 443–446. doi:10.1016/S0257-8972(03)00187-7

    Article  Google Scholar 

  14. O. Sarikaya, S. Anik, S. Aslanlar, S.C. Okumus, and E. Celik, Al-Si/B4C Composite Coatings on Al-Si Substrate by Plasma Spray Technique, Mater. Des., 2007, 28(9), p 2443–2449. doi:10.1016/j.matdes.2006.09.007

    Article  Google Scholar 

  15. R.G. Song, C. Wang, Y. Jiang, H. Li, G. Lu, and Z.X. Wang, Microstructure and Properties of Al2O3/TiO2 Nanostructured Ceramic Composite Coatings Prepared by Plasma Spraying, J. Alloys Compd., 2012, 544, p 13-18. doi:10.1016/j.jallcom.2012.07.032

    Article  Google Scholar 

  16. S. Uozato, K. Nakata, and M. Ushio, Evaluation of Ferrous Powder Thermal Spray Coatings on Diesel Engine Cylinder Bores, Surf. Coat. Technol., 2005, 200(7), p 2580–2586. doi:10.1016/j.surfcoat.2005.05.042

    Article  Google Scholar 

  17. S. Brossard, P.R. Munroe, A.T.T. Tran, and M.M. Hyland, Study of the Splat Formation for Plasma Sprayed NiCr on Aluminum Substrate as a Function of Substrate Condition, Surf. Coat. Technol., 2010, 204(16–17), p 2647–2656. doi:10.1016/j.surfcoat.2010.02.013

    Article  Google Scholar 

  18. A.T.T. Tran, M.M. Hyland, K. Shinoda, and S. Sampath, Influence of Substrate Surface Conditions on the Deposition and Spreading of Molten Droplets, Thin Solid Films, 2011, 519(8), p 2445–2456. doi:10.1016/j.tsf.2010.11.047

    Article  Google Scholar 

  19. A.T.T. Tran, M.M. Hyland, K. Shinoda, and S. Sampath, Inhibition of Molten Droplet Deposition by Substrate Surface Hydroxides, Surf. Coat. Technol., 2011, 206(6), p 1283–1292. doi:10.1016/j.surfcoat.2011.08.041

    Article  Google Scholar 

  20. Y. Danlos, S. Costil, H. Liao, and C. Coddet, Combining Effects of Ablation Laser and Laser Preheating on Metallic Substrates Before Thermal Spraying, Surf. Coat. Technol., 2008, 202(18), p 4531–4537. doi:10.1016/j.surfcoat.2008.04.038

    Article  Google Scholar 

  21. Y. Danlos, S. Costil, H. Liao, and C. Coddet, Influence of Ti-6Al-4V and Al 2017 Substrate Morphology on Ni-Al Coating Adhesion—Impacts of Laser Treatments, Surf. Coat. Technol., 2001, 205(8–9), p 2702–2708. doi:10.1016/j.surfcoat.2010.08.147

    Article  Google Scholar 

  22. P. Kruger, R. Knes, and J. Friedrich, Surface Cleaning by Plasma-Enhanced Desorption of Contaminants (PEDC), Surf. Coat. Technol., 1999, 112(1–3), p 240–244. doi:10.1016/S0257-8972(98)00777-4

    Article  Google Scholar 

  23. N. Anagreh and A. Robaidi, Improvement in Adhesion Behavior of Aluminum Due to Surfaces Treatment with Arc Discharge, Jordan J. Mech. Ind. Eng., 2010, 4(2), p 330–339

    Google Scholar 

  24. G.W. Critchlow and D.M. Brewis, Review of Surface Pretreatments for Aluminium Alloys, Int. J. Adhes. Adhes., 1996, 16(4), p 255–275. doi:10.1016/S0143-7496(96)00014-0

    Article  Google Scholar 

  25. M. Robotti, S. Dosta, M. Gardon, I.G. Cano, J.M. Guilemany, M. Kourasi, B. Mellor, and R. Wills, Enhancing the Performance of Common Electrode Materials by Means of Atmospheric Plasma Spray Coatings, J. Energy Storage, 2016, 5, p 127–133. doi:10.1016/j.est.2015.12.001

    Article  Google Scholar 

  26. M. Winnicki, A. Małachowska, M. Rutkowska-Gorczyca, P. Sokołowski, A. Ambroziak, and L. Pawłowski, Characterization of Cermet Coatings Deposited by Low-Pressure Cold Spraying, Surf. Coat. Technol., 2015, 268, p 108–114. doi:10.1016/j.surfcoat.2014.12.070

    Article  Google Scholar 

  27. M. Couto, S. Dosta, and J.M. Guilemany, Comparison of the Mechanical and Electrochemical Properties of WC-17 and 12Co Coatings onto Al7075-T6 Obtained by High Velocity Oxy-Fuel and Cold Gas Spraying, Surf. Coat. Technol., 2015, 268, p 180–189. doi:10.1016/j.surfcoat.2014.04.034

    Article  Google Scholar 

  28. H. Long, T. Yefa, W. Xiaolong, X. Ting, and H. Xiang, Microstructure and Wear Properties of Al2O3-CeO2/Ni-base Alloy Composite Coatings on Aluminum Alloys by Plasma Spray, Appl. Surf. Sci., 2014, 314, p 760–767. doi:10.1016/j.apsusc.2014.07.047

    Article  Google Scholar 

  29. B. Torres, M. Campo, M. Lieblich, and J. Rams, Oxy-Acetylene Flame Thermal Sprayed Coatings of Aluminium Matrix Composites Reinforced with MoSi2 Intermetallic Particles, Surf. Coat. Technol., 2013, 236, p 274–283. doi:10.1016/j.surfcoat.2013.10.001

    Article  Google Scholar 

  30. L. Gu, X. Fan, Y. Zhao, B. Zou, Y. Wang, S. Zhao, and X. Cao, Influence of Ceramic Thickness on Residual Stress and Bonding Strength for Plasma Sprayed Duplex Thermal Barrier Coating on Aluminum Alloy, Surf. Coat. Technol., 2012, 206(21), p 4403–4410. doi:10.1016/j.surfcoat.2012.04.070

    Article  Google Scholar 

  31. A. Naimi, H. Yousfi, and M. Trari, Microstructure and Corrosion Resistance of Molybdenum and Aluminum Coatings Thermally Sprayed on 7075-T6 Aluminum Alloy, Prot. Met. Phys. Chem. Surf., 2012, 48(5), p 557–562, http://link.springer.com/article/10.1134%2FS2070205112050061.

  32. R.G. Song, C. Wang, Y. Jiang, H. Li, G. Lu, and Z.X. Wang, Microstructure and Properties of Al2O3/TiO2 Nanostructures Ceramic Composite Coatings Prepared by Plasma Spraying, J. Alloys Compd., 2012, 544, p 13–18. doi:10.1016/j.jallcom.2012.07.032

    Article  Google Scholar 

  33. I. Tsangaraki-Kaplanoglou, S. Theohari, Th Dimogerontakis, Y.M. Wang, H.H.H. Kuo, and S. Kia, Effect of Alloy Types on the Anodizing Process of Aluminum, Surf. Coat. Technol., 2006, 200(8), p 2634–2641. doi:10.1016/j.surfcoat.2005.07.065

    Article  Google Scholar 

  34. S.V. Oleynik, Yu.A. Kuzenkov, S.A. Karimova, and T.I. Tararaeva, Non-Chromate Conversion Coatings on A7075 Aluminum Alloy after Various Thermal Treatment, Prot. Met. Phys. Chem. Surf., 2011, 47(7), p 889–894, http://link.springer.com/article/10.1134%2FS2070205111070124

  35. T. Aerts, I. Graeve, and H. Terryn, Anodizing of Aluminium under Applied Electrode Temperature: Process Evaluation and Elimination of Burning at High Current Densities, Surf. Coat. Technol., 2010, 204, p 2754–2760. doi:10.1016/j.surfcoat.2010.02.031

    Article  Google Scholar 

  36. A. Bjorgum, F. Lapique, J. Walmsley, and K. Redford, Anodising as Pre-Treatment for Structural Bonding, Int. J. Adhes. Adhes., 2003, 23(5), p 401–412. doi:10.1016/S0143-7496(03)00071-X

    Article  Google Scholar 

  37. S.S. Golru, M.M. Attar, and B. Ramezanzadeh, Effects of Different Surface Cleaning Procedures on the Superficial Morphology and the Adhesive Strength of Epoxy Coating on Aluminium Alloy 1050, Prog. Org. Coat., 2015, 87, p 52–60. doi:10.1016/j.porgcoat.2015.05.005

    Article  Google Scholar 

  38. O. Lunder, B. Olsen, and K. Nisancioglu, Pre-treatment of AA6060 Aluminium Alloy for Adhesive Bonding, Int. J. Adhes. Adhes., 2002, 22(2), p 143–150. doi:10.1016/S0143-7496(01)00049-5

    Article  Google Scholar 

  39. P. Erdogan, B. Yuksel, and Y. Birol, Effect of Chemical Etching on the Morphology of Anodic Aluminum Oxides in the Two-Step Anodization Process, Appl. Surf. Sci., 2012, 258(10), p 4544–4550. doi:10.1016/j.apsusc.2012.01.025

    Article  Google Scholar 

  40. R. Lukauskaitė, A.V. Valiulis, and O. Černašėjus, Investigation of Cathodic Cleaning Processes of Aluminum Alloy, Solid State Phenom., 2015, 220–221, p 684–692

    Article  Google Scholar 

  41. C.D. Wagner, W.M. Riggs, L.E. Davis, J.F. Moulder, and G.E. Muilenberg, Handbook of X-ray Photoelectron Spectroscopy, Perkin Elmer Corporation, St. Paul, 1978

    Google Scholar 

  42. NIST X-ray Photoelectron Spectroscopy Database on http://srdata.nist.gov/xps/. Accessed 14 Sept 2015

  43. A. Baldan, Adhesion Phenomena in Bonded Joints, Int. J. Adhes. Adhes., 2012, 38, p 95–116. doi:10.1016/j.ijadhadh.2012.04.007

    Article  Google Scholar 

  44. L. Mazzola, E. Bemporad, and F. Carassiti, An Easy Way to Measure Surface Free Energy by Drop Shape Analysis, Measurement, 2012, 45(3), p 317–324. doi:10.1016/j.measurement.2011.11.016

    Article  Google Scholar 

  45. A. Rudawska and E. Jacniacka, Analysis for Determining Surface Free Energy Uncertainty by the Owen-Wendt Method, Int. J. Adhes. Adhes., 2009, 29(4), p 451–457. doi:10.1016/j.ijadhadh.2008.09.008

    Article  Google Scholar 

  46. Y. Tan and M. Guo, Using Surface Free Energy Method to Study the Cohesion and Adhesion of Asphalt Mastic, Constr. Build. Mater., 2013, 47, p 254–260. doi:10.1016/j.conbuildmat.2013.05.067

    Article  Google Scholar 

  47. W. Pinc, S. Geng, M. O’Keefe, W. Fahrenholtz, and T. O’Keefe, Effects of Acid and Alkaline Based Surface Preparations on Spray Deposited Cerium Based Conversion Coatings on Al 2024-T3, Appl. Surf. Sci., 2009, 255(7), p 4061–4065. doi:10.1016/j.apsusc.2008.10.110

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Škamat.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lukauskaitė, R., Valiulis, A.V., Černašėjus, O. et al. Preparing Al-Mg Substrate for Thermal Spraying: Evaluation of Surface State After Different Pretreatments. J. of Materi Eng and Perform 25, 3493–3505 (2016). https://doi.org/10.1007/s11665-016-2153-x

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-016-2153-x

Keywords

Navigation