Skip to main content
Log in

EBSD Study on Grain Boundary and Microtexture Evolutions During Friction Stir Processing of A413 Cast Aluminum Alloy

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

The as-cast Al alloys contain heterogeneous distributions of non-deforming particles due to non-equilibrium solidification effects. Therefore, these alloys have poor tribological and mechanical behaviors. It is well known that using friction stir processing (FSP), very fine microstructure is created in the as-cast Al alloys, while their wear resistance can be improved. In this research work, FSP is used to locally refine a surface layer of the coarse as-cast microstructure of cast A413 Al alloy. The main objective of this study is to investigate the effect of FSP on microstructure and microtexture evolutions in A413 cast Al alloy. The grain boundary character distribution, grain structure, and microtexture evolutions in as-cast and friction stir processed A413 Al alloy are analyzed by electron back scatter diffraction technique. It is found that with the FSP, the fraction of low ∑boundary such as ∑3, 7, and 9 are increased. The obtained results show that there are no deformation texture components in the structure of friction stir processed samples. However, some of the main recrystallization texture components such as BR and cubeND are formed during FSP which indicate the occurrence of dynamic recrystallization phenomenon due to the severe plastic deformation induced by the rotation of tool.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

References

  1. U.F.H.R. Suhuddin, S. Mironov, Y.S. Sato, H. Kokawa, and C.-W. Lee, Grain Structure Evolution During Friction-Stir Welding of AZ31 Magnesium Alloy, Acta Mater., 2009, 57, p 5406–5418

    Article  Google Scholar 

  2. A. Tajiri, Y. Uematsu, T. Kakiuchi, Y. Tozaki, Y. Suzuki, and A. Afrinaldi, Effect of Friction Stir Processing Conditions on Fatigue Behavior and Texture Development in A356-T6 Cast Aluminum Alloy, Int. J. Fatigue, 2015, 80, p 192–202

    Article  Google Scholar 

  3. Y. Chen, H. Ding, J. Li, Z. Cai, J. Zhao, and W. Yang, Influence of Multi-Pass Friction Stir Processing on the Microstructure and Mechanical Properties of Al-5083 Alloy, Mater. Sci. Eng. A, 2016, 650, p 281–289

    Article  Google Scholar 

  4. L.A. Pilchak and J.C. Williams, Microstructure and Texture Evolution During Friction Stir Processing of Fully Lamellar Ti-6Al-4V, Metall. Mater. Trans. A, 2010, 42, p 773–794

    Article  Google Scholar 

  5. T.S. Mahmoud and S.S. Mohamed, Improvement of Microstructural, Mechanical and Tribological Characteristics of A413 Cast Al Alloys Using Friction Stir Processing, Mater. Sci. Eng. A, 2012, 558, p 502–509

    Article  Google Scholar 

  6. T.S. Mahmoud, Surface Modification of A390 Hypereutectic Al-Si Cast Alloys Using Friction Stir Processing, Surf. Coat. Technol., 2013, 228, p 209–220

    Article  Google Scholar 

  7. S.A. Alidokht, A. Abdollah-zadeh, S. Soleymani, T. Saeid, and H. Assadi, Evaluation of Microstructure and Wear Behavior of Friction Stir Processed Cast Aluminum Alloy, Mater. Charact., 2012, 63, p 90–97

    Article  Google Scholar 

  8. S. Tutunchilar, M. Haghpanahi, M.K. Besharati Givi, P. Asadi, and P. Bahemmat, Simulation of Material Flow in Friction Stir Processing of a Cast Al-Si Alloy, Mater. Des., 2012, 40, p 415–426

    Article  Google Scholar 

  9. C.L. Xu, H.Y. Wang, Y.F. Yang, H.-Y. Wang, and Q.C. Jiang, Effect of La2O3 in the Al-P-Ti-TiC-La2O3 Modifier on Primary Silicon in Hypereutectic Al-Si Alloys, J. Alloy. Compd., 2006, 421, p 128–132

    Article  Google Scholar 

  10. C.L. Xu, Y.F. Yang, H.Y. Wang, and Q.C. Jiang, Effects of Modification and Heat-Treatment on the Abrasive Wear Behavior of Hypereutectic Al-Si Alloys, J. Mater. Sci., 2007, 42, p 6331–6338

    Article  Google Scholar 

  11. A.P. Reynolds, Friction Stir Welding, Sci. Technol. Weld. Join., 2007, 12, p 282–283

    Article  Google Scholar 

  12. Y. Cao, H. Di, J. Zhang, J. Zhang, T. Ma, and R.D.K. Misra, An Electron Backscattered Diffraction Study on the Dynamic Recrystallization Behavior of a Nickel-Chromium Alloy (800H) During Hot Deformation, Mater. Sci. Eng. A, 2013, 585, p 71–85

    Article  Google Scholar 

  13. S. Yang, Z.J. Wang, H. Kokawa, and Y.S. Sato, Grain Boundary Engineering of 304 Austenitic Stainless Steel by Laser Surface Melting and Annealing, J. Mater. Sci., 2006, 42, p 847–853

    Article  Google Scholar 

  14. B. Alexandreanu and G.S. Was, The Role of Stress in the Efficacy of Coincident Site Lattice Boundaries in Improving Creep and Stress Corrosion Cracking, Scr. Mater., 2006, 54, p 1047–1052

    Article  Google Scholar 

  15. F. Shi, X. Li, Y. Hu, C. Su, and C. Liu, Optimization of Grain Boundary Character Distribution in Fe-18Cr-18Mn-0. 63N High-Nitrogen, Acta Metall. Sin., 2013, 26, p 497–502

    Article  Google Scholar 

  16. T. Shinoda, M. Kawai, and H. Takegami, Novel Process of Surface Modification Of Aluminium Casts Applying Friction Stir Phenomenon Novel Process of Surface Modification of Aluminium Casts Applying Friction Stir Phenomenon, Weld. World, 2005, 49, p 12–17

    Article  Google Scholar 

  17. T. Shinoda and M. Kawai, Surface Modification by Novel Friction Thermomechanical Process of Aluminum Alloy Castings, Surf. Coat. Technol., 2003, 170, p 456–459

    Article  Google Scholar 

  18. W.X. Shi, B. Gao, G.F. Tu, and S.W. Li, Effect of Nd on Microstructure and Wear Resistance of Hypereutectic Al-20%Si Alloy, J. Alloy. Compd., 2010, 508, p 480–485

    Article  Google Scholar 

  19. K. Nakata, Y.G. Kim, H. Fujii, T. Tsumura, and T. Komazaki, Improvement of Mechanical Properties of Aluminum Die Casting Alloy by Multi-Pass Friction Stir Processing, Mater. Sci. Eng. A, 2006, 437, p 274–280

    Article  Google Scholar 

  20. S. Mironov, Y.S. Sato, H. Kokawa, H. Inoue, and S. Tsuge, Structural Response of Superaustenitic Stainless Steel to Friction Stir Welding, Acta Mater., 2011, 59, p 5472–5481

    Article  Google Scholar 

  21. Z.Y. Ma, Friction Stir Processing Technology: A Review, Metallurgical and Materials Transactions A, 2008, 39, p 642–658

    Article  Google Scholar 

  22. H.T. Naeem, K.S. Mohammed, and K.R. Ahmad, Effect of Friction Stir Processing on the Microstructure and Hardness of an Aluminum-Zinc-Magnesium-Copper Alloy with Nickel Additives, Phys. Met. Metall., 2015, 116, p 1035–1046

    Article  Google Scholar 

  23. D. Yadav and R. Bauri, Effect of Friction Stir Processing on Microstructure and Mechanical Properties of Aluminium, Mater. Sci. Eng. A, 2012, 539, p 85–92

    Article  Google Scholar 

  24. Z.Y. Ma, S.R. Sharma, and R.S. Mishra, Effect of Friction Stir Processing on the Microstructure of Cast A356 Aluminum, Mater. Sci. Eng. A, 2006, 433, p 269–278

    Article  Google Scholar 

  25. U.Von Schlippenbach, F. Emren, and K. Lücke, Investigation of the Development of the Cold Rolling Texture in Deep Drawing Steels by ODF-Analysis, Acta Metall., 1986, 34, p 1289–1301

    Article  Google Scholar 

  26. H. Kokawa, T. Watanabe, and S. Karashima, Sliding Behaviour and Dislocation Structures in Aluminium Grain Boundaries, Philos. Mag. A, 1981, 10, p 37–41

    Google Scholar 

  27. U. Krupp, W.M. Kane, X. Liu, O. Dueber, C. Laird, and C.J. McMahon, The Effect of Grain-Boundary-Engineering-Type Processing on Oxygen-Induced Cracking of IN718, Mater. Sci. Eng. A, 2003, 349, p 213–217

    Article  Google Scholar 

  28. K.J. Al-Fadhalah, Texture and Grain Boundary Character Distribution in a Thermomechanically Processed OFHC Copper, J. Eng. Mater. Technol., 2012, 1, p 011001

    Article  Google Scholar 

  29. T. Watanabe, An Approach to Grain Boundary Design for Strong and Ductile Polycrystals, Res. Mech., 1984, 11, p 47–84

    Google Scholar 

  30. G. Palumbo and K.T. Aust, Structure-Dependence of Intergranular Corrosion in High Purity Nickel, Acta Metall. Mater., 1990, 38, p 2343–2352

    Article  Google Scholar 

  31. D. Crawford and G. Was, The Role of Grain Boundary Misorientation in Intergranular Cracking of Ni-16Cr-9Fe in 360 C Argon and High-Purity Water, Metall. Trans. A, 1992, 23, p 1195–1206

    Article  Google Scholar 

  32. F.J. Humphreys and M. Hatherly, Recrystallization and Related Annealing Phenomena, 2nd ed., Pergamon Materials Series Elsevier Ltd, Oxford, 2004

    Google Scholar 

  33. Z.Y. Ma, S.R. Sharma, and R.S. Mishra, Effect of Multiple-Pass Friction Stir Processing on Microstructure and Tensile Properties of a Cast Aluminum-Silicon Alloy, Scr. Mater., 2006, 54, p 1623–1626

    Article  Google Scholar 

  34. P.B. Prangnell, J.R. Bowen, and P.J. Apps, Ultra-Fine Grain Structures in Aluminium Alloys by Severe Deformation Processing, Mater. Sci. Eng. A, 2004, 375–377, p 178–185

    Article  Google Scholar 

  35. U.F.H.R. Suhuddin, S. Mironov, Y.S. Sato, and H. Kokawa, Grain Structure and Texture Evolution During Friction Stir Welding of Thin 6016 Aluminum Alloy Sheets, Mater. Sci. Eng. A, 2010, 527, p 1962–1969

    Article  Google Scholar 

  36. D. Hughes and N. Hansen, High Angle Boundaries Formed by Grain Subdivision Mechanisms, Acta Mater., 1997, 45, p 3871–3886

    Article  Google Scholar 

  37. O. Engler and V. Randle, Introduction to Texture Analysis, Macrotexture, Microtexture and Orientation Mappings, CRC Press, Boca Raton, 2010

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hossein Mostaan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shamanian, M., Mostaan, H., Safari, M. et al. EBSD Study on Grain Boundary and Microtexture Evolutions During Friction Stir Processing of A413 Cast Aluminum Alloy. J. of Materi Eng and Perform 25, 2824–2835 (2016). https://doi.org/10.1007/s11665-016-2141-1

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-016-2141-1

Keywords

Navigation