Skip to main content
Log in

Effect of Initial Microstructure on the Performance of 6XXX Al-alloy Laser Welds: A Computational Study

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

Laser welding (LW) offers an attractive joining technique for Al-alloys. The performance of laser welds usually suffers from mechanical strength degradation in the heat-affected zone (HAZ). In the present study, the effect of the initial-aged microstructure on the post-welded state of 6XXX Al-alloys laser welds was examined via computational modeling techniques. A well-established and detailed precipitation model was used, coupled with a strength model. The influence of the main process variables for aging heat treatment (time and temperature) and LW (power and speed) on the mechanical integrity of weld joints and specifically in the yield strength profile in the HAZ was analyzed. Also, a simple method for the prediction of the width of HAZ is provided. It is concluded that more coarsened microstructures show better performance (compared with the aged state) due to lower degradation of mechanical strength and narrower width of HAZ on the post-welded state. This study provides a method for the selection of the appropriate process parameters for aging and LW of 6XXX Al-alloys.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Abbreviations

A :

Lattice constant (m)

b :

Magnitude of Burgers vector (m)

\(\bar{C}\) :

Mean solute concentration in matrix (wt.%)

C 0 :

Initial solute concentration (wt.%)

C eq :

Equilibrium solute concentration (wt.%)

\(C_{i}\) :

Solute concentration in particle/matrix interface (wt.%)

\(C_{\text{p}}\) :

Particle concentration (wt.%)

C p :

Heat capacity (J/kg K)

\(D_{\text{c}}\) :

Diffusion coefficient (m2/s)

\(\bar{F}\) :

Mean obstacle strength (N)

f :

Particles volume fraction (%)

G :

Shear modulus (N/m2)

\(G\left( {D,t} \right)\) :

Growth/dissolution rate of particles (m/s)

\(J\left( t \right)\) :

Nucleation rate (#/m3s)

k :

Thermal conductivity (W/m K)

K :

Boltzmann constant (J/K)

k j :

Constant in solution hardening model (Pa wt.%(−2/3))

\(k_{\text{ppt}}\) :

Constant in precipitation hardening model (Mpa m)

M :

Taylor factor (#)

\(N_{0}\) :

Number of nucleation sites (#/m3)

\(N_{i}\) :

Number of particles of size i per unit volume (#/m3)

\(n\left( {D,t} \right)\) :

Number density distribution function (#/m3m)

Q:

Welding power (W)

r:

Particle radius (m)

\(r^{*}\) :

Critical particle radius for nucleation (m)

\(r_{i}\) :

Particle radius of size i (m)

\(r_{\text{c}}\) :

Critical particle radius for shearing/bypassing transition (m)

\(\bar{r}\) :

Mean particle radius (m)

R g :

Universal gas constant (J/kmol)

R(\(R = \sqrt {x^{2} + y^{2} + z^{2} }\)):

Distance to the center of laser beam (m)

s :

Particle/matrix interface position (m)

t :

Time (s)

t peak :

Time when the peak strength is achieved (s)

T :

Temperature (K)

T 0 :

Ambient temperature (K)

u :

Welding speed (m/s)

\(V_{\text{m}}\) :

Particle molar volume (m3/mol)

w(\({w = x - ut}\)):

Distance in x-direction in a moving coordinate of speed u (m)

xyz:

Cartesian coordinates

\(Z\) :

Zeldovich factor (m)

\(\text{HAZ}_{y}\) :

Width of HAZ

α :

Thermal diffusivity (m2/s)

β :

Constant for dislocation line tension (#)

\(\beta^{*}\) :

Addition rate of solute atoms to critical nuclei (#/s)

\(\gamma\) :

Interfacial energy (J/m)

\(\delta \left( {D - D^{*} } \right)\) :

Delta Kronecker function (#)

\(\Delta G^{*}\) :

Activation energy (J/K)

ΔG 0 :

Energy term related to nucleus/matrix interfacial energy (J/K)

ΔH 0 :

Enthalpy for the Mg2Si formation reaction (J/mol)

ΔS 0 :

Entropy for the Mg2Si formation reaction (J/Kmol)

μ :

Gaussian distribution parameter (m)

ρ :

Aluminum density (kg/m3)

σ :

Overall macroscopic yield strength (Pa)

σ i :

Lattice resistance (Pa)

σ WH :

Work hardening (Pa)

σ GB :

Grain boundary hardening (Pa)

σ ss :

Solid solution strengthening (Pa)

σ p :

Precipitation hardening (Pa)

\(\sigma_{0}\) :

Sum of lattice resistance, work hardening, and grain boundary hardening (Pa)

References

  1. S. Stano, T. Pfeifer, and M. Rozanski, Modern Technologies of Welding Aluminium and Its Alloys, Weld. Int., 2012, 28, p 1–9

    Google Scholar 

  2. M. Kumagai, Recent Technological Developments in Welding of Aluminium and Its Alloys, Weld. Int., 2003, 17(3), p 173–181

    Article  Google Scholar 

  3. X. Cao, W. Wallace, C. Poon, and J.P. Immarigeon, Research and Progress in Laser Welding of Wrought Aluminum Alloys. I. Laser Welding Processes, Mater. Manuf. Process., 2003, 18(1), p 1–22

    Article  Google Scholar 

  4. L. Quintino, A. Costa, R. Miranda, D. Yapp, V. Kumar, and C.J. Kong, Welding with High Power Fiber Lasers—A Preliminary Study, Mater. Des., 2007, 28(4), p 1231–1237

    Article  Google Scholar 

  5. X. Cao, W. Wallace, J.-P. Immarigeon, and C. Poon, Research and Progress in Laser Welding of Wrought Aluminum Alloys. II. Metallurgical Microstructures, Defects, and Mechanical Properties, Mater. Manuf. Process., 2003, 18(1), p 23–49

    Article  Google Scholar 

  6. S.N. Samaras and G.N. Haidemenopoulos, Modelling of Microsegregation and Homogenization of 6061 Extrudable Al-Alloy, J. Mater. Process. Technol., 2007, 194, p 63–73

    Article  Google Scholar 

  7. G. Edwards, K. Stiller, G.L. Dunlop, and M.J. Couper, The Precipitation Sequence in AlMgSi Alloys, Acta Mater., 1998, 46(11), p 3893–3904

    Article  Google Scholar 

  8. L. Zhang, X. Li, Z. Nie, H. Huang, and L. Niu, Comparison of Microstructure and Mechanical Properties of TIG and Laser Welding Joints of a New Al-Zn-Mg-Cu alloy, Mater. Des., 2016, 92, p 880–887

    Google Scholar 

  9. D. Maisonnette, M. Suery, D. Nelias, P. Chaudet, and T. Epicier, Effects of Heat Treatments on the Microstructure and Mechanical Properties of a 6061 Aluminium Alloy, Mater. Sci. Eng. A, 2011, 528(6), p 2718–2724

    Article  Google Scholar 

  10. D. Narsimhachary, R.N. Bathe, G. Padmanabham, and A. Basu, Influence of Temperature Profile During Laser Welding of Aluminum Alloy 6061 T6 on Microstructure and Mechanical Properties, Mater. Manuf. Process., 2014, 29(8), p 948–953

    Article  Google Scholar 

  11. O.R. Myhr and O. Grong, Process Modelling Applied to 6082-T6 Aluminium Weldments I, React. Kinet. Acta Metall. Mater., 1991, 39(11), p 2693–2702

    Article  Google Scholar 

  12. O.R. Myhr and O. Grong, Process Modelling Applied to 6082-T6 Aluminium Weldments II, Applications of Model, Acta Metall. Mater., 1991, 39(11), p 2703–2708

    Article  Google Scholar 

  13. O.T. Midling and O. Grong, A Process Model for Friction Welding of Al-Mg-Si Alloys and Al-SiC Metal Matrix Composites-I. HAZ Temperature and Strain Rate Distribution, Acta Metall. Mater., 1994, 42(5), p 1595–1609

    Article  Google Scholar 

  14. O.T. Midling and O. Grong, A Process Model for Friction Welding of A1-Mg-Si Alloys and A1-SiC Metal Matrix Composites II. HAZ Microstructure and Strength Evolution, Acta Metall. Mater., 1994, 42(5), p 1611–1622

    Article  Google Scholar 

  15. A.D. Zervaki and G.N. Haidemenopoulos, Computational Kinetics Simulation of the Dissolution and Coarsening in the HAZ Laser Welding of 6061-T6 Al-Alloy, Suppl. Weld. J., 2007, 86, p 211–221

    Google Scholar 

  16. R. Wagner and R. Kampmann, Materials Science and Technology, Vol 5, VCH, Weinhein, 1991, p 21

    Google Scholar 

  17. R. Kampmann, H. Eckerlebe, and R. Wagner, Precipitation Kinetics in Metastable Solid Solutions-Theoretical Considerations and Application to Cu-Ti Alloys, Mater. Res. Soc. Symp. Proc. MRS, 2000, 57, p 525–542

    Article  Google Scholar 

  18. O.R. Myhr and O. Grong, Modelling of Non-isothermal Transformations in Alloys Containing a Particle Distribution, Acta Mater., 2000, 48, p 1605–1615

    Article  Google Scholar 

  19. S.N. Samaras, Modelling of Microstructure Evolution During Precipitation Processes: A Population Balance Approach of the KWN Model, Modell. Simul. Mater. Sci. Eng., 2006, 14(8), p 1271–1292

    Article  Google Scholar 

  20. O.R. Myhr, O. Grong, H.G. Fjaer, and C.D. Marioara, Modelling of the Microstructure and Strength Evolution in Al-Mg-Si Alloys During Multistage Thermal Processing, Acta Mater., 2004, 52, p 4997–5008

    Article  Google Scholar 

  21. A. Simar, Y. Brechet, B. de Meester, A. Denquin, and T. Pardoen, Sequential Modeling of Local Precipitation, Strength and Strain Hardening in Friction Stir Welds of an Aluminum Alloy 6005A-T6, Acta Mater., 2007, 55, p 6133–6143

    Article  Google Scholar 

  22. N. Kamp, A. Sullivan, R. Tomasi, and J.D. Robson, Modelling of Heterogeneous Precipitate Distribution Evolution During Friction Stir Welding Process, Acta Mater., 2006, 54(8), p 2003–2014

    Article  Google Scholar 

  23. N. Kamp, A. Sullivan, and J.D. Robson, Modelling of Friction Stir Welding of 7xxx Aluminium Alloys, Mater. Sci. Eng. A, 2007, 466(1), p 246–255

    Article  Google Scholar 

  24. H.M. Hulburt and S. Katz, Some Problems in Particle Technology: A Statistical Mechanical Formulation, Chem. Eng. Sci,, 1964, 19, p 555–574

    Article  Google Scholar 

  25. D. Ramkrishna, Population Balances: Theory and Applications to Particulate Systems in Engineering, Academic Press, San Diego, 2000

    Google Scholar 

  26. K.C. Russell, Nucleation in Solids: The Induction and Steady State Effects, Adv. Colloid Interf. Sci., 1980, 13, p 205–318

    Article  Google Scholar 

  27. S. Motz, A. Mitrovi, and E.D. Gilles, Comparison of Numerical Methods for the Simulation of Dispersed Phase Systems, Chem. Eng. Sci., 2002, 57, p 4329–4344

    Article  Google Scholar 

  28. C.W. Gear, Numerical Initial Value Problems in Ordinary Differential Equations, Prentice-Hall, Englewood Cliffs, 1971

    Google Scholar 

  29. O. Grong, Metallurgical Modeling of Welding of Aluminum Alloys, Vol 2, The Institute of Materials, London, 1997

    Google Scholar 

  30. O.R. Myhr, O. Grong, and S.J. Andersen, Modelling of the Age Hardening Behavior of Al-Mg-Si Alloys, Acta Mater., 2001, 49, p 65–75

    Article  Google Scholar 

  31. A. Deschamps and Y. Brechet, Influence of Predeformation and Ageing of an Al-Zn-Mg Alloy: II. Modeling of Precipitation Kinetics and Yield Stress, Acta Mater., 1999, 47, p 293–305

    Article  Google Scholar 

  32. E. Hornbogen, Hundred Years of Precipitation Hardening, J. Light Metals, 2001, 1, p 127–132

    Article  Google Scholar 

  33. H.R. Shercliff and M.F. Ashby, A Process Model for Age Hardening of Aluminum Alloys: II. Applications of the model, Acta Metall. Mater., 1990, 38, p 1803–1812

    Article  Google Scholar 

  34. A.P. Mackwood and R.C. Crafer, Thermal Modelling of Laser Welding and Related Processes: A Literature Review, Optics Laser Technol., 2005, 37, p 99–115

    Article  Google Scholar 

  35. D. Rosenthal, The Theory of Moving Sources of Heat and Its Application to Metal Treatments, Trans. Am. Soc. Mech. Eng., 1946, 68, p 849–866

    Google Scholar 

  36. N.S. Tsai and T.W. Eagar, Changes of Weld Pool Shape by Variations in the Distribution of Heat Source, Arc Welding Modelling of Casting and Welding Processes, J.A. Dantzig and J.T. Berry, Ed., AIME, New York, 1999, p 317–328

    Google Scholar 

  37. T.W. Eagar and N.S. Tsai, Temperature Fields Produced by Traveling Distributed Heat Sources, Weld. J., 1983, 62(12), p 346s–355s

    Google Scholar 

  38. W. Liu, J. Ma, F. Kong, S. Liu, and R. Kovacevic, Numerical Modeling and Experimental Verification of Residual Stress in Autogenous Laser Welding of High-Strength Steel, Lasers Manuf. Mater. Process., 2015, 2(1), p 24–42

    Article  Google Scholar 

  39. W. Liu, J. Ma, M.M. Atabaki, and R. Kovacevic, Joining of Advanced High-Strength Steel to AA 6061 Alloy by Using Fe/Al Structural Transition Joint, Mater. Des., 2015, 68, p 146–157

    Article  Google Scholar 

  40. M. Van Elsen, M. Baelmans, P. Mercelis, and J.P. Kruth, Solutions for Modelling Moving Heat Sources in a Semi-infinite Medium and Applications to Laser Material Processing, Int. J. Heat Mass Transf., 2007, 50, p 4872–4882

    Article  Google Scholar 

  41. G.A. Moraitis and G.N. Labeas, Prediction of Residual Stresses and Distortions Due to Laser Beam Welding of Butt Joints in Pressure Vessels, Int. J. Press. Vessels Pip., 2009, 86, p 133–142

    Article  Google Scholar 

  42. H.S. Carlsaw and J.C. Jaeger, Conduction of Heat in Solids, Oxford University Press, Oxford, 1959

    Google Scholar 

  43. J.A. Vargas, J.E. Torres, J.A. Pacheco, and R.J. Hernandez, Analysis of Heat Input Effect on the Mechanical Properties of Al-6061-T6 Alloy Weld Joints, Mater. Des., 2013, 52, p 556–564

    Article  Google Scholar 

  44. V.A. Karkhin, A.S. Ilin, H.J. Pesch, A.A. Prikhodovsky, V.V. Plochikhine, M.V. Makhutin, and H.W. Zoch, Effects of Latent Heat of Fusion on Thermal Processes in Laser Welding of Aluminium Alloys, Sci. Technol. Weld. Join., 2005, 10(5), p 597–603

    Article  Google Scholar 

  45. A. Hirose, H. Todaka, H. Yamaoka, N. Kurosawa, and K.F. Kobayashi, Quantitative Evaluation of Softened Regions in Weld Heat-Affected Zones of 6061-T6 Aluminum Alloy-Characterizing of the Laser Beam Welding Process, Metall. Mater. Trans. A, 1999, 30A, p 2115–2120

    Article  Google Scholar 

  46. P.G. Partridge and M.C. McConnell, The Effect of Microstructure and Composition on the Properties of Vapour Quenched Al-Cr Alloys—II. Tensile Properties, Acta Metall., 1987, 35(8), p 1981–1993

    Article  Google Scholar 

  47. Q. Zhao, B. Holmedal, Effect of Si Additions on Solid Solution Hardening of Al-Mn Alloys, ICAA13: 13th International Conference on Aluminum Alloys, H. Weiland, A.D. Rollett, W.A. Cassada, Eds., Wiley, Hoboken, NJ, USA, 2012.

  48. J.D. Robson, Modelling the Overlap of Nucleation, Growth and Coarsening During Precipitation, Acta Mater., 2004, 52, p 4669–4676

    Article  Google Scholar 

  49. K. Behler, J. Berkmanns, A. Ehrhardt, and W. Frohn, Laser Beam Welding of Low Weight Materials and Structures, Mater. Des., 1997, 18(6), p 261–267

    Article  Google Scholar 

  50. M.M. Atabaki, M. Nikodinovski, P. Chenier, J. Ma, W. Liu, and R. Kovacevic, Experimental and numerical Investigations of Hybrid Laser Arc Welding of Aluminum Alloys in the Thick T-Joint Configuration, Optics Laser Technol., 2014, 59, p 68–92

    Article  Google Scholar 

Download references

Acknowledgments

The author acknowledges Dr. A. Keramopoulos for his useful comments and proofreading.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Spiros N. Samaras.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Samaras, S.N. Effect of Initial Microstructure on the Performance of 6XXX Al-alloy Laser Welds: A Computational Study. J. of Materi Eng and Perform 25, 1729–1740 (2016). https://doi.org/10.1007/s11665-016-2037-0

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-016-2037-0

Keywords

Navigation