Skip to main content
Log in

Friction Stir Welding of a Thick Al-Zn-Mg Alloy Plate

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

Al-Zn-Mg alloys are widely used as structural materials due to high strength-to-weight ratio and impact toughness. As fusion welds in these alloys commonly face hot cracking and macro porosity, friction stir welding is increasingly becoming the preferred recourse. We report here a detailed experimental study on friction stir welding of a specific Al-Zn-Mg alloy with its chemical compositions close to AA7039. The effect of tool rotational speed and welding speed on the weld profile, joint microstructure, and mechanical properties is studied extensively. The results show sound weld profiles and joint properties within the selected range of process conditions. Within the selected range of welding conditions, the welds made at a tool rotational speed of 350 rpm and welding speed of 3 mm/s have showed joint structure, tensile, and impact toughness properties fairly close to that of the base material.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. B. Thomson, K. Doherty, C. Niese, M. Eff, T. Stotler, Z. Pramann, J. Seaman, R. Spencer and W. Perry, Friction stir welding of thick section aluminum for military vehicle applications, available at: http://oai.dtic.mil/oai/oai?verb=getRecord&metadataPrefix=html&identifier=ADA574537 (accessed online 16 June 2015)

  2. G. Çam and S. Mistikoglu, Recent Developments in Friction Stir Welding of Al-alloys, J. Mater. Eng. Perform., 2014, 23(6), p 1936–1952

    Article  Google Scholar 

  3. R. Nandan, T. DebRoy, and H.K.D.H. Bhadeshia, Recent Advances in Friction-Stir Welding—Process, Weldment Structure and Properties, Prog. Mater. Sci., 2008, 53(6), p 980–1023

    Article  Google Scholar 

  4. J.W. Bray, ASM Handbook, Properties and Selection: Non-ferrous Alloys and Special Purposes Materials, Vol 2, ASTM International, Materials Park, 1990, p 431–435

    Google Scholar 

  5. V. Balasubramanian and A.K. Lakshminarayanan, The Mechanical Properties of the GMAW, GTAW and FSW Joints of the RDE-40 Aluminium Alloy, Int. J. Microstruct. Mater. Prop., 2008, 3(6), p 837–852

    Google Scholar 

  6. A.K. Lakshminarayanan and V. Balasubramanian, Process Parameter Optimization for Friction Stir Welding of RDE-40 Aluminum Alloy Using Taguchi Technique, Trans. Nonferrous Met. Soc. China, 2008, 18(3), p 548–554

    Article  Google Scholar 

  7. G.M. Reddy, A.A. Gokhale, K.S. Prasad, and K.P. Rao, Chill Zone Formation in Al–Li Alloy Welds, Sci. Technol. Weld. Join., 1998, 3(4), p 208–212

    Article  Google Scholar 

  8. G.D. Janaki Ram, R. Murugesan, and S. Sundaresan, Fusion Zone Grain Refinement in Aluminum Alloy Welds Through Magnetic Arc Oscillation and Its Effect on Tensile Behavior, Int. J. Mater. Eng. Process., 1999, 8(5), p 513–520

    Google Scholar 

  9. D.A. Shelwatkar, G.M. Reddy, and A.A. Gokhale, Gas Tungsten Arc Welding Studies on Similar and Dissimilar Combinations of Al-Zn-Mg alloy RDE 40 and Al-Li Alloy 1441, Sci. Technol. Weld. Join., 2002, 7(6), p 352–361

    Article  Google Scholar 

  10. S. Dev, B.S. Murty, and K.P. Rao, Effects of Base and Filler Chemistry and Weld Techniques on Equiaxed Zone Formation in Al–Zn–Mg Alloy Welds, Sci. Technol. Weld. Join., 2008, 13(7), p 598–606

    Article  Google Scholar 

  11. X. Lei, Y. Deng, Y. Peng, Z. Yin, and G. Xu, Microstructure and Properties of TIG/FSW Welded Joints of a New Al-Zn-Mg-Sc-Zr Alloy, J. Mater. Eng. Perform., 2013, 22(9), p 2723–2729

    Article  Google Scholar 

  12. P. Kumar, C.A. Anoop, and S. Kumar, Study of Heat Input for GTA Welded Aluminium Alloy 7039, Int. J. Eng. Res. Dev., 2013, 2(5), p 150–156

    Google Scholar 

  13. S.C. Wu, X. Yu, R.Z. Zuo, W.H. Zhang, H.L. Xie, and J.Z. Jiang, Porosity, Element Loss and Strength Model on Softening Behaviour of Hybrid Laser Arc Welded Al-Zn-Mg-Cu ALLOY with Synchrotron Radiation Analysis, Weld. J., 2013, 92(2), p 64–71

    Google Scholar 

  14. C.M. Allen, G. Verhaeghe, P.A. Hilton, C.P. Heason, and P.B. Pragnell, Laser and Hybrid Laser-MIG Welding of 6.35 and 12.7 mm Thick Aluminium Aerospace Alloy, Mater. Sci. Forum, 2006, 519–521(1), p 1139–1144

    Article  Google Scholar 

  15. C. Sharma, D.K. Dwivedi, and P. Kumar, Effect of Welding Parameters on Microstructure and Mechanical Properties of Friction Stir Welded Joints of AA7039 Aluminum Alloy, Mater. Des., 2012, 36(1), p 379–390

    Article  Google Scholar 

  16. D. Venkateswarlu, A.K. Mandal, M.M. Mahapatra, and S.P. Harsh, Tool Design Effects for FSW of AA7039, Weld. J., 2013, 92(2), p 41–47

    Google Scholar 

  17. A.S. Golzani, R.V. Barenji, A. Heidarzadeh, and H. Pouraliakbar, Elucidating of Tool Rotational Speed in Friction Stir Welding of 7020-T6 Aluminum Alloy, Int. J. Adv. Manuf. Technol., 2015, doi:10.1007/s00170-015-7252-6

    Google Scholar 

  18. K.A.A. Hassan, P.B. Prangnell, A.F. Norman, D.A. Price, and S.W. Williams, Effect of Welding Parameters on Nugget Zone Microstructure and Properties in High Strength Aluminium Alloy Friction Stir Welds, Sci. Technol. Weld. Joining, 2003, 8(4), p 257–268

    Article  Google Scholar 

  19. X. Xu, Y. Lu, F. Zheng, and B. Chen, Microstructural Investigation of Friction-Stir-Welded 7005 Aluminum Alloy, J. Mater. Eng. Perform., 2015, doi:10.1007/s11665-015-1764-y

    Google Scholar 

  20. T.S. Rao, G.M. Reddy, and S.R.K. Rao, Microstructure and Mechanical Properties of Friction Stir Welded AA7075-T651 Aluminum Alloy Thick Plates, Trans. Nonferrous Met. Soc. China, 2015, 25(1), p 1770–1778

    Article  Google Scholar 

  21. J. Woolman and R.A. Mottaram, The Mechanical and Physical Properties of the British Standard En Steels (B.S. 970-1955), Vol 3, Pergamon, New York, 1964, p 72–110

    Google Scholar 

  22. A. Arora, A. De, and T. DebRoy, Towards Optimum Friction Stir Welding Shoulder Diameter, Scripta Mater., 2011, 64, p 9–12

    Article  Google Scholar 

  23. W.J. Arbegast and P.J. Hartley, Friction Stir Weld Technology Development at Lockheed Martin Michoud Space Systems—An Overview, Proceedings of the 5th International Conference on Trends in Welding Research, June 15 (Pine Mountain, GA, USA), 1998, 1(1), p 541–546

  24. J. Schneider, R. Beshears, and A.C. Nunes, Interfacial Sticking and Slipping in the Friction Stir Welding Process, Mater. Sci. Eng. A, 2006, 436(1–2), p 297–304

    Article  Google Scholar 

  25. Y.G. Kim, H. Fujii, T. Tsumura, T. Komazaki, and K. Nakata, Three Defect Types in Friction Stir Welding of Aluminum Die Casting Alloy, Mater. Sci. Eng. A, 2006, 415(1–2), p 250–254

    Article  Google Scholar 

  26. S. Rajakumar, C. Muralidharan, and V. Balasubramanian, Influence of Friction Stir Welding Process and Tool Parameters on Strength Properties of AA7075-T6 Aluminum Alloy Joints, Mater. Des., 2011, 32(1), p 535–549

    Article  Google Scholar 

  27. H. Doude, J. Schneider, B. Patton, S. Stafford, T. Waters, and C. Varner, Optimizing Weld Quality of a Friction Stir Welded Aluminum Alloy, J. Mater. Process. Technol., 2015, 222(1), p 188–196

    Article  Google Scholar 

  28. K. Elangovan and V. Balasubramanian, Influeces of Tool Pin Profile and Formation of Friction Stir Processing Zone in AA2219 Aluminium Alloy, J. Mater. Process. Technol., 2008, 200(1–3), p 163–175

    Article  Google Scholar 

  29. M.W. Mahoney, C.G. Rhodes, J.G. Flintoff, R.A. Spurling, and W.H. Bingel, Properties of Friction Stir Welded 7075-T651 Aluminum, Metall. Mater. Trans. A, 1998, 29(7), p 1956–1964

    Article  Google Scholar 

  30. Y.H. Zhao, X.Z. Liao, Z. Jin, R.Z. Valiev, and Y.T. Zhu, Microstructure and Mechanical Properties of Ultrafine Grained 7075 Al Alloy Processed by ECAP and Their Evolutions During Annealing, Acta Mater., 2004, 52(15), p 4589–4599

    Article  Google Scholar 

  31. K.R. Cardoso, D.N. Travessa, W.J. Botta, and A.M. Jorge, High Strength AA7050 Al Alloy Processed by ECAP: Microstructure and Mechanical Properties, Mater. Sci. Eng. A, 2011, 528(18), p 5804–5811

    Article  Google Scholar 

  32. H. Abd El-Hafez, Mechanical Properties and Welding Power of Friction Stirred AA2024-T35 Joints, J. Mater. Eng. Perform., 2011, 20(6), p 839–845

    Article  Google Scholar 

  33. K. Ramanjaneyulu, G.M. Reddy, A.V. Rao, and R. Markandeya, Structure-Property Correlation of AA2014 Friction Stir Welds: Role of Tool Pin Profile, J. Mater. Eng. Perform., 2013, 22(8), p 2224–2240

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. De.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Buchibabu, V., Reddy, G.M., Kulkarni, D. et al. Friction Stir Welding of a Thick Al-Zn-Mg Alloy Plate. J. of Materi Eng and Perform 25, 1163–1171 (2016). https://doi.org/10.1007/s11665-016-1924-8

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-016-1924-8

Keywords

Navigation