Skip to main content
Log in

Reaction Time and Film Thickness Effects on Phase Formation and Optical Properties of Solution Processed Cu2ZnSnS4 Thin Films

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

Copper-zinc-tin-sulfide (Cu2ZnSnS4 or CZTS) is a promising p-type semiconductor material as absorber layer in thin film solar cells. The sulfides of copper and tin as well as zinc and sulfur powders were dissolved in hydrazine. The effect of chemical reaction between precursor species, at room temperature, was assessed for 6 to 22 h. For 22 h reaction time, the effect of spin coated film thickness on the resulting composition, after annealing under N2 flow at 500 °C for 1 h, was investigated. The morphology, composition, and optical properties of the annealed films were determined by means of x-ray diffraction, scanning electron microscope, and spectrophotometer studies. It was found that, for less than optimal reaction time of 22 h or film thickness below 1.2 µm, other ternary phases namely Cu4SnS4, Cu5Sn2S7, and ZnS co-exist in different proportions besides CZTS. Formation of phase-pure CZTS films also exhibited a tendency to minimize film cracking during annealing. Depending on the processing conditions, the band gap (E g) values were determined to be in the range of 1.55 to 1.97 eV. For phase-pure annealed CZTS film, an increase in the E g value may be attributed to quantum confinement effect due to small crystallite size.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. PV Magazine, ZSW sets 21.7% thin film efficiency record, http://www.pv-magazine.com/news/details/beitrag/zsw-sets-217-thin-film-efficiency-record_100016505/#axzz3NAQ5uFEp, 22 Sep 2014.

  2. PV Magazine, Thin-film competition hots up as TSMC Solar breaks day-old CIGS efficiency record, http://www.pv-tech.org/news/thin_film_competition_hots_up_as_tsmc_producer_breaks_day_old_cigs_efficien, 28 April, 2015

  3. S. Siebentritt and A.S. Schorr, Kesterites—A Challenging Material for Solar Cells, Prog. Poovoltaics, 2012, 20, p 512–519

    Article  Google Scholar 

  4. M. Jiang, Yan X, Cu2ZnSnS4 Thin Film Solar Cells: Present Status and Future Prospects. In: Arturo Morales-Acevedo (Ed.) Solar Cells—Research and Application Perspectives, InTech (2013)

  5. I.V. Fisher, S.R. Cohen, A. Ruzin, and D. Cahen, How Polycrystalline Devices Can Outperform Single-Crystal Ones Thin Film CdTe/CdS Solar Cells, Adv. Mater., 2004, 16, p 879–883

    Article  Google Scholar 

  6. L. Arora, V.N. Singh, G. Partheepan, T.D. Senguttuvan, and K. Jain, One-Step Synthesis of Size-Controlled CZTS Quantum Dots, Appl. Nanosci., 2015, doi:10.1007/s13204-015-0404-z (Feb 13)

    Google Scholar 

  7. D.-C. Nguyen, S. Ito, and D.V.A. Dung, Effects of Annealing Conditions on Crystallization of the CZTS Absorber and Photovoltaic Properties of Cu(Zn, Sn)(S, Se)2 Solar Cells, J. Alloys Compd., 2015, 632, p 676–680

    Article  Google Scholar 

  8. R. Schurr, A. Hölzing, S. Jost, R. Hock, T. Voβ, J. Schulze, A. Kirbs, A. Ennaoui, M.L. Steiner, A. Weber et al., The Crystallisation of Cu2ZnSnS4 Thin Film Solar Cell Absorbers from Co-Electroplated Cu-Zn-Sn Precursors, Thin Solid Films, 2009, 517(7), p 2465–2468

    Article  Google Scholar 

  9. T. Todorov, O. Gunawan, S.J. Chey, T.G. de Monsabert, A. Prabhakar, and D.B. Mitzi, Progress Towards Marketable Earth-Abundant Chalcogenide Solar Cells, Thin Solid Films, 2011, 519(21), p 7378–7381

    Article  Google Scholar 

  10. K. Hironori, J. Kazuo, Y. Satoru, K.T.M.W. Shwe, F. Tatsuo, I. Tadashi, and M. Tomoyoshi, Enhanced Conversion Efficiencies of Cu2ZnSnS4-Based Thin Film Solar Cells by Using Preferential Etching Technique, Appl. Phys. Express, 2008, 1(4), p 041201

    Google Scholar 

  11. A. Shavel, J. Arbiol, and A. Cabot, Synthesis of Quaternary Chalcogenide Nanocrystals: Stannite Cu2ZnxSnySe1+x+2y, J. Am. Chem. Soc., 2010, 132(1), p 4414–4415

    Google Scholar 

  12. H. Wang, Progress in Thin Film Solar Cells Based on Cu2ZnSnS4, Int. J. Photoenergy, 2011, 2011, p 1–10

    Article  Google Scholar 

  13. G. Ma, T. Minegishi, D. Yokoyama, J. Kubota, and K. Domen, Photoelectrochemical Hydrogen Production on Cu2ZnSnS4/Mo-Mesh Thin-Film Electrodes prEpared by Electroplating, Chem. Phys. Lett., 2011, 501(4–6), p 619–622

    Article  Google Scholar 

  14. S.C. Riha, B.A. Parkinson, and A.L. Prieto, Solution-Based Synthesis and Characterization of Cu2ZnSnS4 Nanocrystals, J. Am. Chem. Soc., 2009, 131(34), p 12054–12055

    Article  Google Scholar 

  15. K. Tanaka, Y. Fukui, N. Moritake, and H. Uchiki, Chemical Composition Dependence of Morphological and Optical Properties of Cu2ZnSnS4 Thin Films Deposited By Sol-Gel Sulfurization and Cu2ZnSnS4 Thin Film Solar Cell Efficiency, Solar Energy Mater. Solar Cells, 2011, 95(3), p 838–842

    Article  Google Scholar 

  16. N. Nakayama and K. Ito, Sprayed Films of Stannite Cu2ZnSnS4, Appl. Surf. Sci., 1996, 92, p 5

    Article  Google Scholar 

  17. M. Cao and Y. Shen, A Mild Solvothermal Route to Kesterite Quaternary Cu2ZnSnS4 Nanoparticles, J. Cryst. Growth, 2011, 318, p 4

    Google Scholar 

  18. T.K. Todorov, K.B. Reuter, and D.B. Mitzi, High-Efficiency Solar Cell with Earth-Abundant Liquid-Processed Absorber, Adv. Mater., 2010, 22(20), p E156–159

    Article  Google Scholar 

  19. D.B. Mitzi, M. Yuan, W. Liu, A.J. Kellock, S.J. Chey, L. Gignac, and A.G. Schrott, Hydrazine-Based Deposition Route for Device-Quality CIGS Films, Thin Solid Films, 2009, 517(7), p 2158–2162

    Article  Google Scholar 

  20. W.-C. Hsu, B. Bob, W. Yang, C.-H. Chung, and Y. Yang, Reaction Pathways for the Formation of Cu2ZnSn(Se, S)4 Absorber Materials from Liquid-Phase Hydrazine-Based Precursor Inks, Energy Environ. Sci., 2012, 5(9), p 8564

    Article  Google Scholar 

  21. N. Moritake, Y. Fukui, M. Oonuki, K. Tanaka, and H. Uchiki, Preparation of Cu2ZnSnS4 Thin Film Solar Cells Under Non-vacuum Condition, Phys. Status Solidi C, 2009, 6, p 1233–1236

    Article  Google Scholar 

  22. A. Ennaoui, M. Lux-Steiner, A. Weber, D. Abou-Ras, I. Kotschau, H.-W. Schock, R. Schurr, A. Holzing, S. Jost, R. Hock, T. Voß, J. Schulze, and A. Kirbs, Cu2ZnSnS4 thin Film Solar Cells from Electroplated Precursors: Novel Low-Cost Perspective, Thin Solid Films, 2009, 517, p 2511–2514

    Article  Google Scholar 

  23. K. Timmo, M. Altosaar, J. Raudoja, K. Muska, M. Pilvet, M. Kauk, T. Varema, M. Danilson, O. Volobujeva, and E. Mellikov, Sulfur-Containing Cu2ZnSnSe4 Monograin Powders for Solar Cells, Sol. Energy Mater. Sol. Cells., 2010, 94, p 1889–1892

    Article  Google Scholar 

  24. W. Wang, M.T. Winkler, O. Gunawan, T. Gokmen, T.K. Todorov, Y. Zhu, and D.B. Mitzi, Device Characteristics of CZTSSe Thin-Film Solar Cells with 12.6% Efficiency, Adv. Energy Mater., 2014, 4, p 1301465

    Google Scholar 

  25. J.J. Scragg, T. Ericson, T. Kubart, M. Edoff, and C. Platzer-Björkman, Chemical Insights into the Instability of Cu2ZnSnS4 Films during Annealing, Chem. Mater., 2011, 23, p 4625–4633

    Article  Google Scholar 

  26. A. Weber, R. Mainz, and H.W. Schock, On the Sn Loss from Thin Films of the Material System Cu-Zn-Sn-S in High Vacuum, J. Appl. Phys., 2010, 107, p 013516

    Article  Google Scholar 

  27. E.J. Silvester, F. Grieser, B.A. Sexton, and T.W. Healy, Spectroscopic Studies on Copper Sulfide Sols, Langmuir, 1991, 7, p 2917–2922

    Article  Google Scholar 

  28. S.K. Haram, A.R. Mahadeshwar, and S.G. Dixit, Synthesis and Characterization of Copper Sulfide Nanoparticles in Triton-X 100 Water-in-Oil Microemulsions, J. Phys. Chem., 1996, 100, p 5868–5873

    Article  Google Scholar 

  29. T. Kameyama, T. Osaki, K. Okazaki, T. Shibayama, A. Kudo, S. Kuwabatade, and T. Torimoto, Preparation and Photoelectrochemical Properties of Densely Immobilized Cu2ZnSnS4 Nanoparticle Films, J. Mater. Chem., 2010, 20, p 5319–5324

    Article  Google Scholar 

  30. F.-J. Fan, L. Wu, M. Gong, G. Liu, Y.-X. Wang, S.-H. Yu, S. Chen, L.-W. Wang, and X.-G. Gong, Composition- and Band-Gap-Tunable Synthesis of Wurtzite-Derived Cu2ZnSn(S1–x Se x )4 Nanocrystals: Theoretical and Experimental Insights, ACS Nano, 2013, 7(2), p 1454–1463

    Article  Google Scholar 

  31. A. Khare, A.W. Wills, L.M. Ammerman, D.J. Norrisz, and E.S. Aydil, Size Control and Quantum Confinement in Cu2ZnSnS4 Nanocrystals, Chem. Commun., 2011, 47, p 11721–11723

    Article  Google Scholar 

  32. L. Arora, V.N. Singh, G. Partheepan, T.D. Senguttuvan and K. Jain, One-Step Synthesis of Size-Controlled CZTS Quantum Dots. Appl. Nanosci. doi:10.1007/s13204-015-0404-z

Download references

Acknowledgments

The work has been funded by the Higher Education Commission (HEC), Pakistan through the National Research Program for Universities (Grant No. 20-1603). The authors would like to extend their sincere appreciation to the Deanship of Scientific Research at King Saud University for its funding of this research through the Research Group Project no. RGP-VPP-283.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad Islam.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Safdar, A., Islam, M., Akram, M.A. et al. Reaction Time and Film Thickness Effects on Phase Formation and Optical Properties of Solution Processed Cu2ZnSnS4 Thin Films. J. of Materi Eng and Perform 25, 457–465 (2016). https://doi.org/10.1007/s11665-015-1874-6

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-015-1874-6

Keywords

Navigation