Skip to main content
Log in

Bending Fatigue of Carburized Steel at Very Long Lives

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

The bending fatigue behavior of two carburized steels is investigated for lives between approximately 105 and 108 cycles. Cracks are observed to start at sub-surface inclusions and develop features on fracture surfaces resembling “fish eyes” in appearance. This type of sub-surface cracking tends to govern fatigue strength at long lives. Previous studies of “fish eye” fatigue in carburized steel have been relatively few and have mainly considered failures originating at depths beneath a carburized case, where compressive residual stresses are minimal and hardness values approach those in the core. This study provides fatigue data for cracks originating within cases at various depths where compressive residual stresses are substantial and hardness is much higher than in the core. Fatigue strength is predicted by a simple model, accounting for the influence of residual stresses and hardness values at the different depths at which cracks started. Predictions of fatigue strength are compared with data generated in this study.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Y. Murakami, Metal Fatigue: Effects of Small Defects and Nonmetallic Inclusions, Elsevier Science Ltd., Oxford, 2002

    Google Scholar 

  2. M. Capetti, T. Tagawa, and T. Miyata, Ultra-long Cycle Fatigue of High-Strength Carbon Steels Part I: Review and Analysis of the Mechanism of Failure, Mater. Sci. Eng., A, 2013, 356, p 227-235

    Article  Google Scholar 

  3. T. Sakai, Review and Prospects for Current Studies on Very High Cycle Fatigue of Metallic Materials for Machine Structural Use, J. Solid Mech. Mater. Eng., 2009, 3, p 425-439

    Article  Google Scholar 

  4. X. Li, Effects of Inclusions on Very High Cycle Fatigue Properties of High Strength Steels, Int. Mater. Rev., 2012, 57, p 92-114

    Article  Google Scholar 

  5. C. Bathias, Gigacycle Fatigue of Bearing Steels, Mater. Sci. Technol., 2012, 28, p 27-33

    Article  Google Scholar 

  6. Y. Murakami, Material Defects as the Basis of Fatigue Design, Int. J. Fatigue, 2012, 41, p 2-10

    Article  Google Scholar 

  7. K. Shiozawa, L. Lu, and S. Ishihara, S-N Curve Characteristics and Subsurface Crack Initiation Behavior in Ultra-long Life Fatigue of a High Carbon Steel-Chromium Bearing Steel, Fatigue Fract. Eng. Mater. Struct., 2001, 24, p 781-790

    Article  Google Scholar 

  8. Y. Ochi, T. Matsumura, K. Masaki, and S. Yoshida, High Cycle Rotating Bending Fatigue Property in Very Long-life Regime of High-cycle Strength Steels, Fatigue Fract. Eng. Mater. Struct., 2002, 25, p 823-830

    Article  Google Scholar 

  9. K. Shiozawa, Y. Morii, S. Nishino, and L. Lu, Subsurface Crack Initiation and Propagation Mechanism in High-Strength Steel in a Very High Cycle Fatigue Regime, Int. J. Fatigue, 2006, 28, p 1521-1532

    Article  Google Scholar 

  10. M. Nakajima, N. Kamiya, H. Itoga, K. Tokaji, and H. Ko, Experimental Estimation of Crack Initiation Lives and Fatigue Limit in Subsurface Fracture of High Carbon Steel, Int. J. Fatigue, 2006, 28, p 1540-1546

    Article  Google Scholar 

  11. Z. Huang, D. Wagner, Q. Wang, and C. Bathias, Effect of Carburizing Treatment on the “Fish Eye” Crack Growth for a Low Alloyed Chromium Steel in Very High Cycle Fatigue, Mater. Sci. Eng., A, 2013, 559, p 790-797

    Article  Google Scholar 

  12. Y. Murakami, T. Nomoto, T. Ueda, and Y. Murakami, On the Mechanism of Fatigue Failure in the Superlong Life Regime (N > 107 Cycles). Part I: Influence of Hydrogen Trapped by Inclusions, Fatigue Fract. Eng. Mater. Struct., 2000, 23, p 893-902

    Article  Google Scholar 

  13. K. Funatani and F. Noda, The Influence of Residual Stress on the Fatigue Strength of Carburized Hardened Steel, J. Soc. Mater. Sci. Jpn., 1968, 17, p 1124-1128

    Article  Google Scholar 

  14. T. Naito, H. Udea, and M. Kikuchi, Fatigue Behavior of Carburized Steel with Internal Oxides and Nonmartensitic Microstructure near the Surface, Metall. Trans. A, 1984, 15A, p 1431-1436

    Article  Google Scholar 

  15. Y. Murakami, T. Nomoto, and T. Ueda, Factors Influencing the Mechanism of Superlong Fatigue Failure in Steels, Fatigue Fract. Eng. Mater. Struct., 1999, 22, p 581-590

    Article  Google Scholar 

  16. Z. Huang, W. Du, D. Wagner, and C. Bathias, Relation Between the Mechanical Behavior of a High Strength Steel and the Microstructure in Gigacycle Fatigue, Mater. Sci. Forum, 2010, 636-637, p 1459-1466

    Article  Google Scholar 

  17. “Standard Test Method for Determining Average Grain Size,” E112, Annual Book of ASTM Standards, vol. 3.01, ASTM, 2012

  18. “Standard Test Method for Knoop and Vickers Hardness of Materials,” E394, Annual Book of ASTM Standards, vol. 3.01, ASTM, 2011

  19. M. Moore and W. Evans, Mathematical Corrections for Stress in Removed Layers in X-ray Diffraction Residual Stress Analysis, SAE Trans., 1958, 66, p 340-345

    Google Scholar 

  20. G. Parrish, Carburizing: Microstructures and Properties, ASM International, Materials Park, OH, 1999

    Google Scholar 

  21. K. Inoue, H. Sonoda, G. Deng, M. Yamanaka, and M. Kato, Effects of CBN Grinding on the Bending Fatigue Strength of Carburized Gears, J. Mech. Des., 1989, 120, p 606-611

    Article  Google Scholar 

  22. R. Pedersen and S. Rice, Case Crushing of Carburized and Hardened Gears, Technical Paper 610034, SAE International, Warrendale, PA, 1961

    Book  Google Scholar 

  23. R. McClung, A Literature Survey on the Stability and Significance of Residual Stresses During Fatigue, Fatigue Fract. Eng. Mater. Struct., 2007, 30, p 173-205

    Article  Google Scholar 

  24. S. Nishijima and K. Kanazawa, Stepwise S-N Curve and Fish-Eye Failure in Gigacycle Fatigue, Fatigue Fract. Eng. Mater. Struct., 1999, 22, p 601-607

    Article  Google Scholar 

  25. T. Sakai, Y. Sato, and N. Oguma, Characteristic S-N Properties of High Carbon-Chromium Bearing Steel under Axial Loading in Long Life Fatigue, Fatigue Fract. Eng. Mater. Struct., 2002, 25, p 765-773

    Article  Google Scholar 

  26. Y. Shimatani, K. Shiozawa, T. Nakada, and T. Yoshimoto, Effect of Surface Residual Stress and Inclusion Size on Fatigue Failure Mode of Matrix HSS in Very High Cycle Regime, Procedia Eng., 2010, 2, p 873-882

    Article  Google Scholar 

  27. K. Shiozawa, T. Hasegawa, Y. Kashiwagi, and L. Lu, Very High Cycle Fatigue Properties of a Bearing Steel under Axial Loading Condition, Int. J. Fatigue, 2009, 31, p 880-888

    Article  Google Scholar 

  28. G. Qian, Y. Hong, and C. Zhou, Investigation of High Cycle and Very High Cycle Fatigue Behavior for a Structural Steel with Smooth and Notched Specimens, Eng. Fail. Anal., 2010, 17, p 1517-1525

    Article  Google Scholar 

  29. W. Hui, Y. Nie, H. Dong, Y. Weng, and C. Wang, High-Cycle Fatigue Fracture Behavior of Ultrahigh Strength Steels, J. Mater. Sci. Technol., 2008, 24, p 787-792

    Article  Google Scholar 

  30. Z. Lei, A. Zhao, J. Xie, C. Sun, and Y. Hong, Very High Cycle Fatigue of GCr15 Steel with Smooth and Hole Defect Specimens, Theor. Appl. Mech. Lett., 2012, doi:10.1063/2.1203103

    Google Scholar 

  31. W. Li, T. Sakai, Q. Li, L. Lu, and P. Wang, Reliability Evaluation on Very High Cycle Fatigue Property of GCr15 Bearing Steel, Int. J. Fatigue, 2010, 32, p 1096-1107

    Article  Google Scholar 

  32. K. Tanaka and Y. Akiniwa, Fatigue Crack Propagation Behavior Derived from S-N Data in Very High Cycle Regime, Fatigue Fract. Eng. Mater. Struct., 2002, 25, p 775-784

    Article  Google Scholar 

  33. J. Zhang, K. Shiozawa, T. Lu, W. Li, and W. Zhang, Fatigue Fracture Behavior of Bearing Steel GCr15 in Very High Cycle Regime, Adv. Mater. Res., 2008, 44-46, p 119-126

    Article  Google Scholar 

  34. Y. Hong, Z. Lei, C. Sun, and A. Zhao, Propensities of Crack Interior Initiation and Early Growth for Very-High-Cycle Fatigue of High Strength Steels, Int. J. Fatigue, 2013, doi:10.1016/j.ijfatigue.2013.02.023

    Google Scholar 

  35. Y. Akiniwa, N. Miyamoto, H. Tsuru, and K. Tanaka, Notch Effect on Fatigue Strength Reduction of Bearing Steel in the Very High Cycle Regime, Int. J. Fatigue, 2006, 28, p 1555-1565

    Article  Google Scholar 

  36. C. Sun, J. Xie, A. Zhao, Z. Lei, and Y. Hong, A Cumulative Damage Model for Fatigue Life Estimation of High-Strength Steels in High-Cycle and Very-High-Cycle Fatigue, Fatigue Fract. Eng. Mater. Struct., 2012, 35, p 638-647

    Article  Google Scholar 

  37. Y. Liu, Z. Yang, Y. Li, S. Chen, S. Li, W. Hui, and Y. Weng, On the Formation of GBF of High-Strength Steel in the Very High Cycle Fatigue Regime, Mater. Sci. Eng., A, 2008, 497, p 408-415

    Article  Google Scholar 

  38. T. Otsuka, H. Hanada, H. Nakashima, K. Sakamoto, M. Hayakawa, K. Hashizume, and M. Sugisaki, Observation of Hydrogen Distribution around Non-Metallic Inclusions in Steels with Tritium Microautoradiography, Fusion Sci. Technol., 2005, 48, p 708-711

    Google Scholar 

  39. K. Shiozawa and L. Lu, Internal Fatigue Failure Mechanism of High Strength Steels in Gigacycle Regime, Key Eng. Mater., 2008, 378-379, p 65-80

    Article  Google Scholar 

  40. P. Novak, R. Yuan, B. Somerday, P. Sofronis, R. Ritchie, and A. Statistical, Physical-based, Micro-Mechanical Model of Hydrogen-Induced Intergranular Fracture of Steel, J. Mech. Phys. Solids, 2010, 58, p 206-228

    Article  Google Scholar 

  41. P. Grad, B. Reuscher, A. Brodyanski, M. Kopnarski, and E. Kerscher, Mechanisms of Fatigue Crack Initiation and Propagation in the Very High Cycle Fatigue Regime of High Strength Steels, Scr. Mater., 2012, 67, p 838-841

    Article  Google Scholar 

  42. H. Streng, C. Razim, and J. Grosch, Diffusion of Hydrogen during Carburization and Tempering, Heat Treatment and Surface Engineering, New Technology and Practical Applications, G. Krauss, Ed., ASM International, Chicago, 1988, p 313-317

    Google Scholar 

  43. Y. Li, Z. Yang, Y. Liu, S. Li, G. Li, W. Hui, and Y. Weng, The Influence of Hydrogen on Very High Cycle Fatigue Properties of High Strength Spring Steel, Mater. Sci. Eng., A, 2008, 489, p 373-379

    Article  Google Scholar 

  44. Y. Li, S. Chen, Y. Liu, Z. Yang, S. Li, W. Hui, and Y. Weng, The Characteristics of Granular-Bright Facet in Hydrogen Pre-Charged and Uncharged High Strength Steels in the Very High Cycle Fatigue Regime, J. Mater. Sci., 2010, 45, p 831-841

    Article  Google Scholar 

  45. Y. Murakami and H. Matsunaga, The Effect of Hydrogen on Fatigue Properties of Steels Used for Fuel Cell System, Int. J. Fatigue, 2006, 28, p 1509-1520

    Article  Google Scholar 

Download references

Acknowledgments

We would like to acknowledge Technology for Energy Corp. for providing x-ray diffraction data and Anamet Labs for hardness measurements.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. V. Nelson.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nelson, D.V., Long, Z. Bending Fatigue of Carburized Steel at Very Long Lives. J. of Materi Eng and Perform 25, 220–226 (2016). https://doi.org/10.1007/s11665-015-1811-8

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-015-1811-8

Keywords

Navigation