Skip to main content
Log in

Thermal Insulation Composite Prepared from Carbon Foam and Silica Aerogel Under Ambient Pressure

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

Carbon foam/silica aerogel composite as a promising thermal insulation material was prepared under ambient pressure successfully in the present work. Carbon foam was prepared by pretreatment, foaming, and carbonization process, while silica aerogel was synthesized by sol-gel method. The microstructure, morphology characteristics, compression strength, and thermal properties of composite were characterized by infrared spectroscopy, x-ray diffraction, scanning electron microscope, universal testing machine, and laser flash thermal detector, respectively. Results showed that silica aerogel was successfully synthesized in the surface foam cells of carbon foam due to the closed cell structure of carbon foam. Moreover, the compressive strength of the carbon foam was not affected by the silica aerogel in the cell structure of carbon foam, while its thermal insulation property at room temperature was improved.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. X. Wang, J. Zhong, Y. Wang, and M. Yu, A Study of the Properties of Carbon Foam Reinforced by Clay, Carbon, 2006, 44, p 1560–1564

    Article  Google Scholar 

  2. S. Li, Q. Guo, Y. Song, Z. Liu, J. Shi, L. Liu, and X. Yan, Carbon Foams with High Compressive Strength Derived from Mesophase Pitch Treated by Toluene Extraction, Carbon, 2007, 45, p 2843–2854

    Article  Google Scholar 

  3. S. Sihn, S. Ganguli, D.P. Anderson, and A.K. Roy, Enhancement of Through-Thickness Thermal Conductivity of Sandwich Construction Using Carbon Foam, Compos. Sci. Technol., 2012, 72, p 763–773

    Google Scholar 

  4. A. Zani, D. Dellasega, V. Russo, and M. Passoni, Ultra-Low Density Carbon Foams Produced by Pulsed Laser Deposition, Carbon, 2013, 56, p 358–365

    Article  Google Scholar 

  5. B. Tsyntsarski, B. Petrova, T. Budinova, N. Petrov, M. Krzesinska, S. Pusz, J. Majewska, and P. Tzvetkov, Carbon Foam Derived from Pitches Modified with Mineral Acids by a Low Pressure Foaming Process, Carbon, 2010, 48, p 3523–3530

    Article  Google Scholar 

  6. J. Kramer, S. Soukiazian, S. Mahoney, and J. Hicks-Garner, Microbial Fuel Cell Biofilm Characterization with Thermogravimetric Analysis on Bare and Polyethyleneimine Surface Modified Carbon Foam Anodes, J. Power Sources, 2012, 210, p 122–128

    Article  Google Scholar 

  7. A. Celzard, G. Tondi, D. Lacroix, G. Jeandel, B. Monod, V. Fierro, and A. Pizzi, Radiative Properties of Tannin-Based, Glasslike, Carbon Foams, Carbon, 2012, 50, p 4102–4113

    Article  Google Scholar 

  8. F. Moglie, D. Micheli, S. Laurenzi, M. Marchetti, and V. Mariani, Primiani. Electromagnetic Shielding Performance of Carbon Foams, Carbon, 2012, 50, p 1972–1980

    Article  Google Scholar 

  9. R. Narasimman and K. Prabhakaran, Preparation of Low Density Carbon Foams by Foaming Molten Sucrose Using an Aluminium Nitrate Blowing Agent, Carbon, 2012, 50, p 1999–2009

    Article  Google Scholar 

  10. S. An, J. Joo, and J. Lee, Ultra-Low-Cost Route to Mesocellular Siliceous Foam from Steel Slag and Mesocellular Carbon Foam as Catalyst Support in Fuel Cell, Microporous Mesoporous Mater., 2012, 151, p 450–456

    Article  Google Scholar 

  11. W. Ford, Method of Making Cellular Refractory Thermal Insulating Material. US Patent 3121050, 1964

  12. C. Chen, E.B. Kennel, A.H. Stiller, P.G. Stansberry, and J.W. Zondlo, Carbon Foam Derived from Various Precursors, Carbon, 2006, 44, p 1535–1543

    Article  Google Scholar 

  13. S. Wang, R. Luo, and Y. Ni, Preparation and Characterization of Resin-Derived Carbon Foams Reinforced by Hollow Ceramic Microspheres, Mater. Sci. Eng. A, 2010, 527, p 3392–3395

    Article  Google Scholar 

  14. A. Ameli, D. Jahani, M. Nofar, P.U. Jung, and C.B. Park, Development of High Void Fraction Polylactide Composite Foams Using Injection Molding: Mechanical and Thermal Insulation Properties, Compos. Sci. Technol., 2014, 90(10), p 88–95

    Article  Google Scholar 

  15. R. Zhang, J. Feng, X. Cheng, L. Gong, Y. Li, and H. Zhang, Porous Thermal Insulation Materials Derived from Fly Ash Using a Foaming and Slip Casting Method, Energy Build., 2014, 81, p 262–267

    Article  Google Scholar 

  16. R. Luo, Y. Ni, J. Li, C. Yang, and S. Wang, The Mechanical and Thermal Insulating Properties of Resin-Derived Carbon Foams Reinforced by K2Ti6O13 Whiskers, Mater. Sci. Eng. A, 2014, 528(4–5), p 2023–2027

    Google Scholar 

  17. S.S. Kistler, Coherent Expanded Aerogels and Jellies, Nature, 1931, 127, p 741

    Article  Google Scholar 

  18. M.A. Aegerter, N. Leventis, and M.M. Koebel, Aerogels Handbook, Springer, New York, 2011, p 21–45

    Book  Google Scholar 

  19. I.-K. Jung, J.L. Gurav, T.-J. Ha, S.G. Choi, S. Baek, and H.-H. Park, The Properties of Silica Aerogels Hybridized with SiO2 Nanoparticles by Ambient Pressure Drying, Ceram. Int., 2012, 38, p 105–108

    Article  Google Scholar 

  20. L. Hu, C. Wang, and Y. Huang, Porous YSZ Ceramics with Unidirectionally Aligned Pore Channel Structure: Lowering Thermal Conductivity by Silica Aerogels Impregnation, J. Eur. Ceram. Soc., 2011, 31, p 2915–2922

    Article  Google Scholar 

  21. B. Yuan, S. Ding, D. Wang, G. Wang, and H. Li, Heat Insulation Properties of Silica Aerogel/Glass Fiber Composites Fabricated by Press Forming, Mater. Lett., 2012, 75, p 204–206

    Article  Google Scholar 

  22. C. Buratti and E. Moretti, Glazing Systems with Silica Aerogel for Energy Savings in Buildings, Appl. Energy, 2012, 98, p 396–403

    Article  Google Scholar 

  23. M. Rueda, L.M. Sanz-Moral, A. Nieto-Marquez, P. Longone, F. Mattea, and A. Martin, Production of Silica Aerogel Microparticles Loaded with Ammonia Borane by Batch and Semicontinuous Supercritical Drying Techniques, J. Supercrit. Fluids, 2014, 92, p 299–310

    Article  Google Scholar 

  24. C.Q. Hong, J.C. Han, X.H. Zhang, and J.C. Du, Novel Nanoporous Silica Aerogel Impregnated Highly Porous Ceramics with Low Thermal Conductivity and Enhanced Mechanical Properties, Scripta Mater., 2013, 68, p 599–602

    Article  Google Scholar 

  25. L.J. Gurav, I.-K. Jung, H.-H. Park, E.S. Kang, and D.Y. Nadargi, Silica Aerogel: Synthesis and Applications, J. Nanomater., 2010, 2010, p 1–10

    Article  Google Scholar 

  26. G. Caputo, M. Scognamiglio, and I. De Marco, Nimesulide Adsorbed on Silica Aerogel Using Supercritical Carbon Dioxide, Chem. Eng. Res. Des., 2012, 90, p 1082–1089

    Article  Google Scholar 

  27. R. AI-Oweini and H. EI-Rassy, Surface Characterization by Nitrogen Adsorption of Silica Aerogels Synthesized from Various Si(OR)4 and RSi(OR)3 Precursors, Appl. Surf. Sci., 2010, 257, p 276–281

    Article  Google Scholar 

  28. M. Alnaief, S. Antonyuk, C.M. Hentzschel, C.S. Leopold, S. Heinrich, and I. Smirnova, A Novel Process for Coating of Silica Aerogel Microspheres for Controlled Drug Release Applications, Microporous Mesoporous Mater., 2012, 160, p 167–173

    Article  Google Scholar 

  29. J. Li, J. Cao, L. Huo, and X. He, One-Step Synthesis of Hydrophobic Silica Aerogel Via In Situ Surface Modification, Mater. Lett., 2012, 87, p 146–149

    Article  Google Scholar 

  30. Y. Duan, S.C. Jana, B. Lama, and M.P. Espe, Reinforcement of Silica Aerogels Using Silane-End-Capped Polyurethanes, Langmuir, 2013, 29, p 6156–6165

    Article  Google Scholar 

  31. L.J. Gibson and M.F. Ashby, Cellular Solids: Structure and Properties, 2nd ed., Cambridge University Press, Cambridge, 1997, p 283

    Google Scholar 

Download references

Acknowledgments

Authors thank Dr. Fuxue Yan, Dr. Li Lei, and Dr. Yang Ren for their help with SEM and XRD tests. The work was supported by The National Natural Science Foundation of China (No. 51172184).

Conflict of interest

None declared.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tiehu Li.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, H., Li, T., Shi, Y. et al. Thermal Insulation Composite Prepared from Carbon Foam and Silica Aerogel Under Ambient Pressure. J. of Materi Eng and Perform 24, 4054–4059 (2015). https://doi.org/10.1007/s11665-015-1686-8

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-015-1686-8

Keywords

Navigation