Skip to main content
Log in

Influences of Processing Time and Discharge Current Density During Pulsed Plasma-Oxidizing process of AISI 316L

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

The influences of discharge current density and oxidation process duration on surface morphology, crystalline phase composition, and electrochemical corrosion performance of pulsed plasma-oxidized AISI 316L stainless steel were studied. Analysis of results shows that samples treated through DC pulsed plasma oxidation (0.5 mA/cm2, 60 min) exhibit corrosion current values of 2.0 × 10−4 mA/cm2 which represent one eighth of the corrosion current obtained for untreated samples and one half that of chemically passivated samples. Scanning electron microscopy, grazing incidence x-ray diffraction, and Raman analysis show that the improved corrosion performance of oxidized samples could be attributed to morphological changes of the oxidized layer which is composed of hematite and magnetite iron oxides. Corrosion performances of DC plasma-oxidized samples suggest that through this technique, it is possible to obtain comparable or even better corrosion performance than techniques, such as inductively coupled plasma-oxidizing process, but without the inherent higher instrumental requirements of radiofrequency plasma processes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. J.A.R. Jayachandran and N. Murugan, Development of Eco-Friendly Surface Modification Process for 316L Austenitic Stainless Steel Weld Cladding, Surf. Eng., 2012, 28(1), p 5–10

    Article  Google Scholar 

  2. H. Dong, P.Y. Qi, X.Y. Li, and R.J. Llewellyn, Improving the Erosion-Corrosion Resistance of AISI, 316 Austenitic Stainless Steel by Low-Temperature Plasma Surface Alloying with N and C, Mater. Sci. Eng. A, 2006, 431, p 137–145

    Article  Google Scholar 

  3. R. Tian and J. Sun, Corrosion Resistance and Interfacial Contact Resistance of TiN Coated 316L Bipolar Plates for Proton Exchange Membrane Fuel Cell, Int. J. Hydrogen Energy, 2011, 36, p 6788–6794

    Article  Google Scholar 

  4. R. Honeycombe and H.K.D.H. Bhadeshia, Steels; Microstructure and Properties, 3rd ed., Elsevier Ltd, Oxford, 2006, p 273–274

    Google Scholar 

  5. S. Fujimoto, T. Yamada, and T. Shibata, Improvement of Pitting Corrosion Resistance of Type 304 Stainless Steel by Modification of Passive Film with Ultraviolet Light Irradiation, J. Electrochem. Soc., 1998, 145, p L79–L81

    Article  Google Scholar 

  6. V. Maurice, W.P. Yang, and P. Marcus, X-ray Photoelectron Spectroscopy and Scanning Tunneling Microscopy Study of Passive Films Formed on (100) Fe-18Cr-13Ni Single-Crystal Surfaces, J. Electrochem. Soc., 1998, 145, p 909–920

    Article  Google Scholar 

  7. M.J. Carmezim, A.M. Simoes, M.F. Montemor, and M. da Cunha Belo, Capacitance Behaviour of Passive Films on Ferritic and Austenitic Stainless Steel, Corr. Sci., 2005, 47, p 581–591

    Article  Google Scholar 

  8. L. Freirea, M.J. Carmezim, M.G.S. Ferreira, and M.F. Montemor, The Passive Behaviour of AISI, 316 in Alkaline Media and the Effect of pH: A Combined Electrochemical and Analytical Study, Electrochim. Acta, 2010, 55, p 6174–6181

    Article  Google Scholar 

  9. T. Ohtsuka, A. Hyono, and Y. Sasaki, Potential Modulation Reflectance of Passivated Type 304 Stainless Steel in Sulfuric Acid Solution, Electrochim. Acta, 2012, 60, p 384–391

    Article  Google Scholar 

  10. A. Kocijian, C. Donik, and M. Jenko, Electrochemical and XPS Studies of the Passive Film Formed on Stainless Steel in Borate Buffer and Chloride Solutions, Corr. Sci., 2007, 49, p 2083–2098

    Article  Google Scholar 

  11. J. Okado, K. Okada, A. Ishiyama, Y. Setsuhara, and K. Takenaka, Corrosion Resistance of Plasma-Oxidized Stainless Steel, Surf. Coat. Technol., 2008, 202, p 5595–5598

    Article  Google Scholar 

  12. A. Vesel, A. Drenik, M. Mozetic, A. Zalar, M. Balat, and M. Bele, AES Investigation of the Stainless Steel Surface Oxidized in Plasma, Vacuum, 2008, 82, p 228–231

    Article  Google Scholar 

  13. J.C. Díaz Guillén, A. Campa Castilla, S.I. Pérez Aguilar, E.E. Granda Gutiérrez, A. Garza Gómez, J. Candelas Ramírez, and R. Méndez Méndez, Effect of Duty Cycle on Surface Properties of AISI, 4340 in Pulsed Plasma Nitriding, Superficies y Vacío, 2009, 22, p 1–4

    Google Scholar 

  14. E.E. Granda Gutiérrez, R. López Callejas, R. Peña Eguiluz, R. Valencia, A. Mercado Cabrera, S.R. Barocio, A. de la Piedad Benitez, J.S. Benítez Read, and J.O. Pacheco Sotelo, V-I, Curves and Plasma Parameters in a High Density DC Glow Discharge Generated by a Current-Source, J. Phys., 2008, 100, p 062019. doi:10.1088/1742-6596/100/6/062019

    Google Scholar 

  15. ASTM, Standard Specifications for Chemical Passivation of Stainless Steel Parts, A 967, Conshohocken, ASTM, 2005

    Google Scholar 

  16. A. Parsapour, M.H. Fathi, M. Salehi, A. Saatchi, and M. Mehdikhan, The Effect of Surface Treatment on Corrosion Behavior of Surgical 316L Stainless Steel Implant, Int. J. ISSI, 2007, 4(1,2), p 34–38

    Google Scholar 

  17. O.N. Shebanova and P. Lazor, Raman Study of Magnetite (Fe3O4): Lasser-Induced Thermal Effects and Oxidation, J. Raman Spectrosc., 2003, 34, p 845–852

    Article  Google Scholar 

  18. D.L.A. Faria, S.V. Silva, and M.T. Oliveira, Raman Microspectroscopy of Some Iron Oxides and Oxyhydroxides, J. Raman Spectrosc., 1997, 28, p 873–878

    Article  Google Scholar 

  19. K. Hasimoto and K. Asami, An X-ray Photo-Electron Spectroscopic Study of the Passivity of Ferritic 19Cr Stainless Steels in 1 NHCl, Corr. Sci., 1979, 19, p 251–260

    Article  Google Scholar 

  20. C.C. Shih, C.M. Shih, Y.Y. Su, L.H. Julie Su, M.S. Chang, and S.J. Lin, Effect of Surface Oxide Properties on Corrosion Resistance of 316L Stainless Steel for Biomedical Applications, Corr. Sci., 2004, 46, p 427–441

    Article  Google Scholar 

  21. F. Borgioli, A. Fossati, E. Galvaneto, T. Bacci, and G. Pradelli, Glow Discharge Nitriding of AISI, 316L Austenitic Stainless Steel: Influence of Treatment Pressure, Surf. Coat. Technol., 2006, 200, p 5505–5513

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. C. Díaz-Guillén.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Díaz-Guillén, J.C., Vargas-Gutiérrez, G., Granda-Gutiérrez, E.E. et al. Influences of Processing Time and Discharge Current Density During Pulsed Plasma-Oxidizing process of AISI 316L. J. of Materi Eng and Perform 24, 2368–2372 (2015). https://doi.org/10.1007/s11665-015-1531-0

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-015-1531-0

Keywords

Navigation