Skip to main content
Log in

Inverse Thermal Analysis of Titanium GTA Welds Using Multiple Constraints

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

Inverse thermal analysis of titanium gas-tungsten-arc welds using multiple constraint conditions is presented. This analysis employs a methodology that is in terms of numerical-analytical basis functions for inverse thermal analysis of steady-state energy deposition in plate structures. The results of this type of analysis provide parametric representations of weld temperature histories that can be adopted as input data to various types of computational procedures, such as those for prediction of solid-state phase transformations. In addition, these temperature histories can be used to construct parametric function representations for inverse thermal analysis of welds corresponding to other process parameters or welding processes whose process conditions are within similar regimes. The present study applies an inverse thermal analysis procedure that provides for the inclusion of constraint conditions associated with both solidification and phase transformation boundaries.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. A.D. Zervaki, V. Stergiou, and S.G. Lambrakos, Case-Study Inverse Thermal Analysis of Al2139 and Al2198 Electron Beam Welds, J. Mater. Eng. Perform., 2013, 22(11), p 3175

    Article  Google Scholar 

  2. S.G. Lambrakos, Inverse Thermal Analysis of Ti-6Al-4 V Deep-Penetration Welds Using Volumetric Constraints, J. Mater. Eng. Perform., 2014, 23(11), p 4019–4031

    Article  Google Scholar 

  3. R.W. Farebrother, Linear Least Square Computations, Marcel Dekker, New York, 1988

    Google Scholar 

  4. Y.B. Bard, Nonlinear Parameter Estimation, Academic Press, New York, 1974

    Google Scholar 

  5. K. Levenberg, A Method for the Solution of Certain Non-linear Problems in Least-Squares, Quart. Appl. Math., 1944, 2, p 164–168

    Google Scholar 

  6. D.W. Marquardt, An Algorithm for Least Squares Estimation of Nonlinear Parameters, J. Soc. Ind. Appl. Moth, 1963, II, p 431–441

    Article  Google Scholar 

  7. D.G. Duffy, Green’s Functions with Applications. Studies in Advanced Mathematics, 1st ed., Chapman and Hall/CRC, London, 2001

    Book  Google Scholar 

  8. A.P. Mackwood and R.C. Crafer, Thermal Modeling of Laser Welding and Related Processes: A Literature Review, Opt. Laser Technol., 2005, 37(2), p 99–115

    Article  Google Scholar 

  9. S. Kabra, D.W. Brown, C.-F. Chen, T.K. Wong, J.O. Milewski, “Measurement and Simulation of Residual Strain in A Laser Welded Titanium Ring,”. Proceeding of the 63rd IIW Conference, Istanbul, 2010

  10. R. Rai, J.W. Elmer, T.A. Palmer, and T. DebRoy, Heat Transfer and Fluid Flow During Keyhole Mode Laser Welding of Tantalum, Ti-6AL-4 V, 304L Stainless Steel and Vanadium, J. Phys. D, 2007, 40, p 5753–5766

    Article  Google Scholar 

  11. S. Mishra and T. DebRoy, Tailoring Gas Tungsten Arc Weld Geometry using a Genetic Algorithm and a Neural Network Trained with Convective Heat Flow Calculations, Mater. Sci. Eng. A, 2007, 454–455, p 477–486

    Article  Google Scholar 

  12. A. Tarantola, Inverse Problem Theory and Methods for Model Parameter Estimation, SIAM, Philadelphia, 2005

    Book  Google Scholar 

  13. M.N. Ozisik and H.R.B. Orlande, Inverse Heat Transfer, Fundamentals and Applications, Taylor and Francis, New York, 2000

    Google Scholar 

  14. K. Kurpisz and A.J. Nowak, Inverse Thermal Problems, Computational Mechanics Publications, Boston, 1995

    Google Scholar 

  15. O.M. Alifanov, Inverse Heat Transfer Problems, Springer, Berlin, 1994

    Book  Google Scholar 

  16. J.V. Beck, B. Blackwell, and C.R. St, Clair, Inverse Heat Conduction: Ill-Posed Problems, Wiley Interscience, New York, 1985

    Google Scholar 

  17. J.V. Beck, “Inverse Problems in Heat Transfer with Application to Solidification and Welding,” Modeling of Casting, Welding and Advanced Solidification Processes V.M. Rappaz, M.R. Ozgu and K.W. Mahin Eds., The Minerals, Metals and Materials Society, Warrendale, 1991, p 427-437

  18. J.V. Beck, “Inverse Problems in Heat Transfer,” Mathematics of Heat Transfer, G.E. Tupholme and A.S. Wood, Eds., Clarendon Press, Oxford, (1998), p. 13-24

  19. S.G. Lambrakos and S.G. Michopoulos, Algorithms for Inverse Analysis of Heat Deposition Processes, ‘Mathematical Modelling of Weld Phenomena,’ Vol. 8, 847, Published by Verlag der Technischen Universite Graz, Austria (2007)

  20. S.G. Lambrakos and J.O. Milewski, Analysis of Welding and Heat Deposition Processes using an Inverse-Problem Approach, Mathematical Modelling of Weld Phenomena, vol. 7, Publishied by Verlag der Technischen Universite Graz, Austria 2005, p 1025–1055

  21. H.S. Carslaw and J.C. Jaegar, Conduction of Heat in Solids, 2nd ed., Clarendon Press, Oxford, 1959, p 374

    Google Scholar 

  22. S. Lathabai, K.J. Barton, L.K. Green, V.K. Tyagi, “Microstructure and Mechanical Properties of Keyhole Gas Tungsten Arc Welds in Titanium and Titanium Alloys,” Proceedings of the 7th International Conference on Trends in Welding Research, Pine Mountain, Georgia, 2005

  23. J.W. Elmer, J. Wong, T. Ressler, J.W. Elmer, J. Wong, and T. Ressler, Spatially Resolved X-Ray Diffraction Phase Mapping and α → β → α Transformation Kinetics in the Heat-Affected Zone of Commercially Pure Titanium Arc Welds, Metall. Mater. Trans. A, 1998, 29A(11), p 2761–2773

    Article  Google Scholar 

  24. S.V. Patankar, Numerical Heat Transfer and Fluid Flow, Series in Computational Methods in Mechanics and Thermal Sciences Hemisphere Publishing Corporation, London, 1980

    Google Scholar 

  25. V. Buljak, Inverse Analyses with Model Reduction, Computational Fluid and Solid Mechanics, Springer, Heidelberg 2012. doi:10.1007/978-3-642-22703-5_1

  26. A. De and T. DebRoy, Reliable Calculations of Heat and Fluid Flow during Conduction Mode Laser Welding through Optimization of Uncertain Parameters, Weld. J., 2005, 84(7), p 101–112

    Google Scholar 

  27. A. Kumar and T. DebRoy, Reliable Modeling of Heat and Fluid Flow in Gas-Metal-Arc Fillet Welds through Optimization of Uncertain Variables, Trends in Welding Research: Proceedings of the 7th International Conference, Pine Mountain, GA, S.A. David, T. DebRoy, J. Lippold, H. Smartt, and J. Vitek, Eds., ASM International, Materials Park, OH, 2006, p 85–90.

  28. A. Kumar and T. DebRoy, A Neural Network Model of Heat and Fluid Flow in Gas Metal Arc Fillet Welding based on Genetic Algorithm and Conjugate Gradient Optimization, Sci. Technol. Weld. Join., 2006, 11(1), p 106–119

    Article  Google Scholar 

Download references

Acknowledgment

This work was supported by a Naval Research Laboratory (NRL) internal core program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. G. Lambrakos.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lambrakos, S.G., Shabaev, A. & Huang, L. Inverse Thermal Analysis of Titanium GTA Welds Using Multiple Constraints. J. of Materi Eng and Perform 24, 2401–2411 (2015). https://doi.org/10.1007/s11665-015-1511-4

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-015-1511-4

Keywords

Navigation