Skip to main content
Log in

Preparation of Spherical Sn/SnO2/Porous Carbon Composite Materials as Anode Material for Lithium-Ion Batteries

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

A novel spherical Sn/SnO2/porous carbon composite anode material was successfully synthesized from activated mesocarbon microbeads (AMCMBs) and SnCl4·5H2O as starting materials by a simple hydrothermal method followed by heat treatment. SnO2 dispersed on AMCMB was partially reduced into metallic Sn favorable for high capacity. The structure, morphology, and electrochemical properties have been studied by x-ray diffraction, scanning electron microscopy, and electrochemical performance test. The results show the porous AMCMB as a supporting matrix surface supports the huge volume expansion and keeps the structural stability of Sn/SnO2 during the insertion/extraction process of lithium ion. The Sn/SnO2/AMCMB sample annealed at 600 °C takes full advantages of the superiorities of porous carbon, SnO2, and metallic Sn and exhibits an excellent cycling performance and rate capability. The specific capacity is 451 mAh g−1 at a current density of 100 mA g−1 after 50 cycles. The Sn/SnO2/AMCMB composite has a large potential application as a high-performance anode material for the lithium-ion batteries.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. K. Sato, M. Noguchi, A. Demachi, N. Oki, and M. Endo, A Mechanism of Lithium Storage in Disordered Carbons, Science, 1994, 264, p 556–558

    Article  Google Scholar 

  2. J.M. Tarascon and M. Armand, Review Article Issues and Challenges Facing Rechargeable Lithium Batteries, Nature, 2001, 414, p 359–367

    Article  Google Scholar 

  3. F.M. Courtel, E.A. Baranova, Y.A. Lebdeh, and I.J. Davidson, In Situ Polyol-Assisted Synthesis of Nano-SnO2/Carbon Composite Materials as Anodes for Lithium-Ion Batteries, J. Power Sour., 2010, 195, p 2355–2361

    Article  Google Scholar 

  4. Y. Wang and Y. Cao, New Developments of Nanostructured Cathode Materials for Highly Efficient Lithium Ion Batteries, Adv. Mater., 2008, 20, p 2251–2269

    Article  Google Scholar 

  5. Y. Idota, T. Kubota, A. Matsufuji, Y. Maekawa, and T. Miyasaka, Tin-Based Amorphous Oxide: A High-Capacity Lithium-Ion-Storage Material, Science, 1997, 276, p 1395–1397

    Article  Google Scholar 

  6. H. Guo, H. Zhao, and X. Jia, Spherical Sn-Ni-C Alloy Anode Material with Submicro/Micro Complex Particle Structure for Lithium Secondary Batteries, Electrochem. Commun., 2007, 9, p 2207–2211

    Article  Google Scholar 

  7. Z. Wang, W. Tian, and X. Li, Synthesis and Electrochemistry Properties of Sn-Sb Ultrafine Particles as Anode of Lithium-Ion Batteries, J. Alloys Compd., 2007, 439, p 350–354

    Article  Google Scholar 

  8. G.X. Wang, J.H. Ahn, J. Yao, S. Bewlay, and H.K. Liu, Nanostructured Si-C Composite Anodes for Lithium-Ion Batteries, Electrochem. Commun., 2004, 6, p 689–692

    Article  Google Scholar 

  9. M. Winter, J.O. Besenhard, M.E. Spahr, and P. Novak, Insertion Electrode Materials for Rechargeable Lithium Batteries, Adv. Mater., 1998, 10, p 725–763

    Article  Google Scholar 

  10. J. Yang, M. Winter, and J.O. Besenhard, Small Particle Size Multiphase Li-Alloy Anodes for Lithium-Ion Batteries, Solid State Ion., 1996, 90, p 281–287

    Article  Google Scholar 

  11. I.A. Courtney and J.R. Dahn, Electrochemical and In Situ X-ray Diffraction Studies of the Reaction of Lithium with Tin Oxide Composites, J. Electrochem. Soc., 1997, 144, p 2045–2052

    Article  Google Scholar 

  12. I.S. Kim, J.T. Vaughey, and O. Auciello, Thin-Film Cu6Sn5 Electrodes: Synthesis, Properties, and Current Collector Interactions, J. Electrochem. Soc., 2008, 155, p A448–A452

    Article  Google Scholar 

  13. M. Egashira, H. Takatsuji, S. Okada, and J.I. Yamaki, Properties of Containing Sn Nanoparticles Activated Carbon Fiber for a Negative Electrode in Lithium Batteries, J. Power Sour., 2002, 107, p 56–60

    Article  Google Scholar 

  14. I. Grigoriants, A. Soffer, G. Salitra, and D. Aurbach, Nanoparticles of Tin Confined in Microporous Carbon Matrices as Anode Materials for Li Batteries, J. Power Sour., 2005, 146(1), p 185–189

    Article  Google Scholar 

  15. J. Wang, D. Li, X. Fan, L. Gou, J. Wang, Y. Li, X. Lu, and Q. Li, Facile Synthesis of Sn-C Nanocomposite as an Anode Material for Lithium Ion Batteries, J. Alloy. Compd., 2012, 516, p 33–37

    Article  Google Scholar 

  16. G. Wang, Y.Q. Ma, Z.Y. Liu, and J.N. Wu, Novel Highly Porous Sn-C Composite as High Performance Anode Material for Lithium-Ion Batteries, Electrochim. Acta., 2012, 65, p 275–279

    Article  Google Scholar 

  17. L.W. Ji, Z. Lin, B.K. Guo, A. Medford, and J. Zhang, Assembly of Carbon-SnO2 Core-Sheath Composite Nanofibers for Superior Lithium Storage, Chem. Eur. J., 2010, 16, p 11543–11548

    Article  Google Scholar 

  18. Z. Shen and R. Xue, Preparation of Activated Mesocarbon Microbeads with High Mesopore Content, Fuel Process. Technol., 2003, 84, p 95–103

    Article  Google Scholar 

  19. X. Shao, W. Wang, R. Xue, and Z. Shen, Adsorption of Methane and Hydrogen on Mesocarbon Microbeads by Experiment and Molecular Simulation, J. Phys. Chem. B, 2004, 108, p 2970–2978

    Article  Google Scholar 

  20. R. Xue, H. Liu, P. Wang, and Z. Shen, Formation of Nanocarbons During Activation of Mesocarbon Microbeads with Potassium Hydroxide, Carbon, 2009, 47, p 318–320

    Article  Google Scholar 

  21. L. Fuhu, C. Weidong, S. Zengmin, W. Yixian, L. Yunfang, and L. Hui, Activation of Mesocarbon Microbeads with Different Textures and Their Application for Supercapacitor, Fuel Process. Technol., 2010, 91, p 17–24

    Article  Google Scholar 

  22. Y. Ji, T. Li, L. Zhu, X. Wang, and Q. Lin, Preparation of Activated Carbons by Microwave Heating KOH Activation, Appl. Surf. Sci., 2007, 254, p 506–512

    Article  Google Scholar 

  23. Y. Zhang, H. Feng, X. Wu, L. Wang, A. Zhang, T. Xia, H. Dong, X. Li, and L. Zhang, Progress of Electrochemical Capacitor Electrode Materials: A Review, Int. J. Hydrogen Energy., 2009, 34, p 4889–4899

    Article  Google Scholar 

  24. C.Z. Yuan, B. Gao, L.H. Su, and X.G. Zhang, NiO Loaded on Hydrothermally Treated Mesocarbon Microbeads (h-MCMB) and Their Supercapacitive Behaviors, Solid State Ion., 2008, 178, p 1859–1866

    Article  Google Scholar 

  25. T.H. Liou, Development of Mesoporous Structure and High Adsorption Capacity of Biomass-Based Activated Carbon by Phosphoric Acid and Zinc Chloride Activation, Chem. Eng. J., 2010, 158, p 129–142

    Article  Google Scholar 

  26. F. Ye, B. Zhao, R. Ran, and Z. Shao, Facile Mechanochemical Synthesis of Nano SnO2/Graphene Composite from Coarse Metallic Sn and Graphite Oxide: An Outstanding Anode Material for Lithium-Ion Batteries, Chem. Eng. J., 2014, 20, p 4055–4063

    Google Scholar 

  27. Y. Wang, X. Jiang, and Y. Xia, A Solution-Phase, Precursor Route to Polycrystalline SnO2 Nanowires that Can be Used for Gas Sensing Under Ambient Conditions, J. Am. Chem. Soc., 2003, 125, p 16176–16182

    Article  Google Scholar 

  28. Q.Y. Li, Z. Li, L. Lin, X. Wang, Y. Wang, C. Zhang, and H. Wang, Facile Synthesis of Activated Carbon/Carbon Nanotubes Compound for Supercapacitor Application, Chem. Eng. J., 2010, 156, p 500–504

    Article  Google Scholar 

  29. T. Morishita, T. Hirabayashi, T. Okuni, N. Ota, and M. Inagaki, Preparation of Carbon-Coated Sn Powders and Their Loading Onto Graphite Flakes for Lithium Ion Secondary Battery, J. Power Sour., 2006, 160, p 638–644

    Article  Google Scholar 

  30. X.W. Lou, D. Deng, J.Y. Lee, and L.A. Archer, Preparation of SnO2/Carbon Composite Hollow Spheres and Their Lithium Storage Properties, Chem. Mater., 2008, 20, p 6562–6566

    Article  Google Scholar 

  31. J. Yao, G.X. Wang, J.H. Ahn, H.K. Liu, and S.X. Dou, Electrochemical Studies of Graphitized Mesocarbon Microbeads as an Anode in Lithium-Ion Cells, J. Power Sour., 2003, 114, p 292–297

    Article  Google Scholar 

  32. X. Chen, K. Kierzek, K. Wilgosz, J. Machnikowski, J. Gong, J. Feng, T. Tang, R.J. Kalenczuk, H. Chen, P.K. Chu, and E. Mijowska, New Easy Way Preparation of Core/Shell Structured SnO2@Carbon Spheres and Application for Lithium-Ion Batteries, J. Power Sour., 2012, 216, p 475–481

    Article  Google Scholar 

  33. J. Zhu, D. Wang, and L. Wang, Preparation of SnO2-Graphene from SnS-Graphene Oxide for Enhanced Reversible Lithium Ion Storage, Inonic, 2013, 19, p 1223–1228

    Article  Google Scholar 

  34. J.O. Besenhard, M. Winter, J. Yang, and W. Biberacher, Filming Mechanism of Lithium-Carbon Anodes in Organic and Inorganic Electrolytes, J. Power Sour., 1995, 54, p 228–231

    Article  Google Scholar 

  35. K. Wang, X. He, J. Ren, C. Jiang, and C. Wan, Preparation of Sn/C Microsphere Composite Anode for Lithium-Ion Batteries Via Carbothermal Reduction, Electrochem. Solid-State Lett., 2006, 9, p A320–A324

    Article  Google Scholar 

Download references

Acknowledgments

This research was supported by NSF of China (51474110, 51364004 and 51064004) and Guangxi Natural Science Foundation (2011GXNSFA018016).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qing-Yu Li.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, HQ., Zhang, XH., Wen, JB. et al. Preparation of Spherical Sn/SnO2/Porous Carbon Composite Materials as Anode Material for Lithium-Ion Batteries. J. of Materi Eng and Perform 24, 1856–1864 (2015). https://doi.org/10.1007/s11665-015-1461-x

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-015-1461-x

Keywords

Navigation