Skip to main content
Log in

Assessment of Retained Austenite in AISI D2 Tool Steel Using Magnetic Hysteresis and Barkhausen Noise Parameters

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

Inaccurate heat treatment process could result in excessive amount of retained austenite, which degrades the mechanical properties, like strength, wear resistance, and hardness of cold work tool steel parts. Thus, to control the mechanical properties, quantitative measurement of the retained austenite is a critical step in optimizing the heat-treating parameters. X-ray diffraction method is the most frequently used technique for this purpose. This technique is, however, destructive and time consuming. Furthermore, it is not applicable to 100% quality inspection of industrial parts. In the present paper, the influence of austenitizing temperature on the retained austenite content and hardness of AISI D2 tool steel has been studied. Additionally, nondestructive magnetic hysteresis parameters of the samples including coercivity, magnetic saturation, and maximum differential permeability as well as their magnetic Barkhausen noise features (RMS peak voltage and peak position) have been investigated. The results revealed direct relations between magnetic saturation, differential permeability, and MBN peak amplitude with increasing austenitizing temperature due to the retained austenite formation. Besides, both parameters of coercivity and peak position had an inverse correlation with the retained austenite fraction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. G. Roberts, G. Krauss, and R. Kennedy, Tool Steels, ASM International, Metals Park, OH, 1998

    Google Scholar 

  2. K.E. Thelning, Steel and Its Heat Treatment, 2nd ed., Butterworths, London, 1984

    Google Scholar 

  3. R.E. Reed-Hill and R. Abbaschian, Physical Metallurgy Principles, 3rd ed., PWS Publishing Company, Boston, 1992

    Google Scholar 

  4. D. Das, A.K. Dutta, and K.K. Ray, Sub-Zero Treatments of AISI, D2 Steel: Part I. Microstructure and Hardness, Mater. Sci. Eng. A, 2010, 527, p 2182–2193

    Article  Google Scholar 

  5. D. Das, A.K. Dutta, V. Toppo, and K.K. Ray, The Effect of Cryogenic Treatment on the Carbide Precipitation and Tribological Behavior of D2 Steel, Mater. Manuf. Process., 2007, 22, p 474–480

    Article  Google Scholar 

  6. A. Molinari, M. Pellizzari, S. Gialanella, G. Straffelini, and K.H. Stiasny, Effect of Deep Cryogenic Treatment on the Mechanical Properties of Tool Steels, J. Mater. Process. Technol., 2001, 118, p 350–355

    Article  Google Scholar 

  7. P.M. Uterweiser, Heat Treater’s Guide, Standard Practices and Procedures for Steel, American Society for Metals, Cleveland, 1989

    Google Scholar 

  8. G.E. Totten, Steel Heat Treatment, 2nd ed., Taylor and Francis, Boca Raton, 2006

    Google Scholar 

  9. S.H. Avner, Introduction to Physical Metallurgy, 2nd ed., McGraw-Hill, New York, 1988

    Google Scholar 

  10. S.S.M. Tavares, S.R. Mello, A.M. Gomes, J.M. Neto, M.R. da Silva, and J.M. Pardal, X-ray Diffraction and Magnetic Characterization of the Retained Austenite in a Chromium Alloyed High Carbon Steel, J. Mater. Sci., 2006, 41, p 4732–4736

    Article  Google Scholar 

  11. L. Zhao, N.H. van Dijk, E. Bruck, J. Sietsma, and S. van der Zwaag, Magnetic and X-ray Diffraction Measurements for the Determination of Retained Austenite in TRIP Steels, Mater. Sci. Eng. A, 2001, 313, p 145–152

    Article  Google Scholar 

  12. D.S. Leem, Y.D. Lee, J.H. Jun, and C.S. Choi, Amount of Retained Austenite at Room Temperature After Reverse Transformation of Martensite to Austenite in an Fe-13%Cr-7%Ni-3%Si Martensitic Stainless Steel, Scripta Mater., 2001, 45, p 767–772

    Article  Google Scholar 

  13. ASTM E975-00, Standard Practice for X-Ray Determination of Retained Austenite in Steel with Near Random Crystallographic Orientation, ASTM Book of Standards, Vol. 03.01, West Conshohocken, PA, 2004

  14. D.C. Jiles, Review of Magnetic Methods for Nondestructive Evaluation (Part 2), NDT Int., 1990, 23, p 83–92

    Article  Google Scholar 

  15. K. Davut and C.H. Gür, Monitoring the Microstructural Changes During Tempering of Quenched SAE 5140 Steel by Magnetic Barkhausen Noise, J. Nondestruct. Eval., 2007, 26, p 107–113

    Article  Google Scholar 

  16. O. Saquet, J. Chicois, and A. Vincent, Barkhausen Noise From Plain Carbon Steels: Analysis of the Influence of Microstructure, Mater. Sci. Eng. A, 1999, 269, p 73–82

    Article  Google Scholar 

  17. A. Sahebalam, M. Kashefi, and S. Kahrobaee, Comparative Study of Eddy Current and Barkhausen Noise Methods in Microstructural Assessment of Heat Treated Steel Parts, Nondestr. Test. Eval., 2014, doi:10.1080/10589759.2014.914207

    Google Scholar 

  18. K. Davut and C.H. Gür, Monitoring the Microstructural Evolution in Spheroidized Steels by Magnetic Barkhausen Noise Measurements, J. Nondestruct. Eval., 2010, 29, p 241–247

    Article  Google Scholar 

  19. F. Rumiche, J.E. Indacochea, and M.L. Wang, Assessment of the Effect of Microstructure on the Magnetic Behavior of Structural Carbon Steels Using an Electromagnetic Sensor, J. Mater. Eng. Perform., 2008, 17, p 586–593

    Article  Google Scholar 

  20. J.A. Perez-Benitez, L.R. Padovese, J. Capo-Sanchez, and J. Anglada-Rivera, Investigation of the Magnetic Barkhausen Noise Using Elementary Signals Parameters in 1000 Commercial Steel, J. Magn. Magn. Mater., 2003, 263, p 72–77

    Article  Google Scholar 

  21. K.V. Rajkumar, S. Vaidyanathan, A. Kumar, T. Jayakumar, B. Raj, and K.K. Ray, Characterization of Aging-Induced Microstructural Changes in M250 Maraging Steel Using Magnetic Parameters, J. Magn. Magn. Mater., 2007, 312, p 359–365

    Article  Google Scholar 

  22. S.S.M. Tavares, H.F.G. Abreu, J.M. Neto, M.R. da Silvad, and I. Popa, A Magnetic Study of the Maraging 350 Steel, J. Magn. Magn. Mater., 2004, 272–276, p 785–787

    Article  Google Scholar 

  23. M. Kaplan, C.H. Gür, and M. Erdogan, Characterization of Dual-Phase Steels Using Magnetic Barkhausen Noise Technique, J. Nondestruct. Eval., 2007, 26, p 79–87

    Article  Google Scholar 

  24. S. Ghanei, A. Saheb Alam, M. Kashefi, and M. Mazinani, Nondestructive Characterization of Microstructure and Mechanical Properties of Intercritically Annealed Dual-Phase Steel by Magnetic Barkhausen Noise Technique, Mater. Sci. Eng. A, 2014, 607, p 253–260

    Article  Google Scholar 

  25. X. Kleber, A. Hug-amalric, and J. Merlin, Evaluation of the Proportion of Phases and Mechanical Strength of Two-Phase Steels Using Barkhausen Noise Measurements: Application to Commercial Dual-Phase Steel, Metall. Mater. Trans. A, 2008, 39, p 1308–1318

    Article  Google Scholar 

  26. A. Martinez-de-Guerenu, K. Gurruchaga, and F. Arizti, Nondestructive Characterization of Recovery and Recrystallization in Cold Rolled Low Carbon Steel by Magnetic Hysteresis Loops, J. Magn. Magn. Mater., 2007, 316, p 842–845

    Article  Google Scholar 

  27. T. Okazaki, T. Ueno, Y. Furuya, M. Spearing, and N.W. Hagood, Detectability of Stress-Induced Martensite Phase in Ferromagnetic Shape Memory Alloy Fe-30.2 at.%Pd by Barkhausen Noise Method, Acta Mater., 2004, 52, p 5169–5175

    Article  Google Scholar 

  28. D. O’Sullivan, M. Cotterell, and I. Meszaros, The Characterisation of Work-Hardened Austenitic Stainless Steel by NDT Micro-Magnetic Techniques, NDTE Int., 2004, 37, p 265–269

    Article  Google Scholar 

  29. C. Zhang, N. Bowler, and C. Lo, Magnetic Characterization of Surface-Hardened Steel, J. Magn. Magn. Mater., 2009, 321, p 3878–3887

    Article  Google Scholar 

  30. S. Vaidyanathan, V. Moorthy, T. Jayakumar, and B. Raj, Evaluation of Induction Hardened Case Depth Through Microstructural Characterisation Using Magnetic Barkhausen Emission Technique, Mater. Sci. Technol., 2000, 16, p 202–208

    Article  Google Scholar 

  31. O. Stupakov, O. Perevertov, I. Tomas, and B. Skrbek, Evaluation of Surface Decarburization Depth by Magnetic Barkhausen Noise Technique, J. Magn. Magn. Mater., 2011, 323, p 1692–1697

    Article  Google Scholar 

  32. O. Perevertov, O. Stupakov, I. Tomas, and B. Skrbek, Detection of Spring Steel Surface Decarburization by Magnetic Hysteresis Measurements, NDTE Int., 2011, 44, p 490–494

    Article  Google Scholar 

  33. O. Stupakov, Investigation of Applicability of Extrapolation Method for Sample Field Determination in Single-Yoke Measuring Setup, J. Magn. Magn. Mater., 2006, 307, p 279–287

    Article  Google Scholar 

  34. G.V. Bida, E.Yu. Sazhina, A.P. Nichipuruk, and T.P. Tsar’kova, Magnetic Properties and Hardness of Maraging Steel 08X15H5Д2T and Nondestructive Testing of Retained Austenite in Parts, Russ. J. Nondestruct. Test., 2008, 44, p 155–166

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mehrdad Kashefi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kahrobaee, S., Kashefi, M. Assessment of Retained Austenite in AISI D2 Tool Steel Using Magnetic Hysteresis and Barkhausen Noise Parameters. J. of Materi Eng and Perform 24, 1192–1198 (2015). https://doi.org/10.1007/s11665-014-1337-5

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-014-1337-5

Keywords

Navigation