Skip to main content
Log in

An Improved CVD Design for Graphene Growth and Transfer Improvements

  • 28th International Conference on Nuclear Tracks and Radiation Measurements
  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

Contamination-free graphene presents vast potential in diverse energy applications, encompassing storage, conversion, harvesting, and catalysis. Ongoing endeavors to ensure graphene’s purity are poised to unlock fresh prospects for advancing sustainable and efficient energy technologies. Despite the chemical vapor deposition (CVD) method’s promise in delivering large-area, high-crystallinity graphene with unique properties, industrial-scale production remains a challenge. Issues surrounding the uniformity and reproducibility of graphene films persist, particularly when synthesized in quartz furnaces, leading to unintended particle contamination that alters growth processes and graphene properties. This study delves into the formation and origins of these contaminants during growth. The authors propose modifying quartz furnace layouts to mitigate sample contamination and achieve clean, uniform graphene films across large areas. Evaluation using scanning electron microscopy (SEM), x-ray photoelectron spectroscopy (XPS), and Raman spectrometry elucidated the characteristics of both as-grown and transferred graphene films.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. S. Tkachev, M. Monteiro, J. Santos, E. Placidi, M. Hassine, P. Marques, P. Ferreira, P. Alpuim, and A. Capasso, Environmentally friendly graphene inks for touch screen sensors. Adv. Funct. Mater. 31, 2103287 (2021).

    Article  CAS  Google Scholar 

  2. F. Withers, O. Del, A. Mishchenko, A. Rooney, A. Gholinia, K. Watanabe, T. Taniguchi, S. Haigh, A. Geim, A. Tartakovskii, and K. Novoselov, Light-emitting diodes by band-structure engineering in van der Waals heterostructures. Nat. Mater. 14, 301 (2015).

    Article  CAS  PubMed  Google Scholar 

  3. C. Lee, X. Wei, J. Kysar, and J. Hone, Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science 321, 385 (2008).

    Article  CAS  PubMed  Google Scholar 

  4. S. Tiwari, S. Sahoo, N. Wang, and A. Huczko, Graphene research and their outputs: Status and prospect. J. Sci.: Adv. Mater. Dev. 5, 10 (2020).

    Google Scholar 

  5. G. Ak, Graphene: status and prospects. Science 324, 1530 (2009).

    Article  Google Scholar 

  6. R. Capaz, Grand challenges in graphene and graphite research. 1 (2022).

  7. G. Wang, L. Zhang, and J. Zhang, A review of graphene synthesis at low temperatures by CVD methods. New Carbon Mater. 35, 193 (2020).

    Article  CAS  Google Scholar 

  8. Z. Hu, F. Li, H. Wu, J. Liao, Q. Wang, G. Chen, Z. Shi, Y. Zhu, S. Bu, Y. Zhao, M. Shang, Q. Lu, K. Jia, Q. Xie, G. Wang, X. Zhang, Y. Zhu, H. Wu, H. Peng, L. Lin, and Z. Liu, Rapid and scalable transfer of large-area graphene wafers. Adv. Mater. 35, 2300621 (2023).

    Article  CAS  Google Scholar 

  9. H. Ci, J. Chen, H. Ma, X. Sun, X. Jiang, K. Liu, J. Shan, X. Lian, B. Jiang, R. Liu, B. Liu, G. Yang, W. Yin, W. Zhao, L. Huang, T. Gao, J. Sun, and Z. Liu, Transfer-free quasi-suspended graphene grown on a Si Wafer. Adv. Mater. 34, 2206389 (2022).

    Article  CAS  Google Scholar 

  10. B. Liu, Z. Sun, K. Cui, Z. Xue, Z. Li, W. Wang, W. Gu, K. Zheng, R. Liu, Y. Zhao, M. Rummeli, X. Gao, J. Sun, and Z. Liu, Self-aided batch growth of 12-inch transfer-free graphene under free molecular flow. Adv. Funct. Mater. 33, 2210771 (2023).

    Article  CAS  Google Scholar 

  11. B. Jiang, D. Liang, Z. Sun, H. Ci, B. Liu, Y. Gao, J. Shan, X. Yang, M. Rummelil, J. Wang, T. Wei, J. Sun, and Z. Liu, Toward direct growth of ultra-flat graphene. Adv. Funct. Mater. 32, 2200428 (2022).

    Article  CAS  Google Scholar 

  12. J. Li, M. Chen, A. Samad, H. Dong, A. Ray, J. Zhang, X. Jiang, U. Schwingenschlogl, J. Domke, C. Chen, Y. Han, T. Fritz, R. Ruoff, B. Tian, and X. Zhang, Wafer-scale single-crystal monolayer graphene grown on sapphire substrate. Nat. Mater. 21, 740 (2022).

    Article  CAS  PubMed  Google Scholar 

  13. K. Novoselov, A. Geim, S. Morozov, D. Jiang, Y. Zhang, S. Dubonos, I. Grigorieva, and A. Firsov, Electric field in atomically thin carbon films. Science 306, 666 (2004).

    Article  CAS  PubMed  Google Scholar 

  14. H. Matte, K. Subrahmanyam, and C. Rao, Synthetic aspects and selected properties of graphene. Nanomater. Nanotechnol. 1, 5 (2011).

    Article  Google Scholar 

  15. M. Bhuyan, M. Uddin, M. Islam, F. Bipasha, and S. Hossain, Synthesis of graphene. Int. Nano Lett. 6, 65 (2016).

    Article  CAS  Google Scholar 

  16. L. Lin, H. Peng, and Z. Liu, Synthesis challenges for graphene industry. Nat. Mater. 18, 520 (2019).

    Article  CAS  PubMed  Google Scholar 

  17. J. Evans, P. Thiel, and M. Bartelt, Morphological evolution during epitaxial thin film growth: formation of 2D islands and 3D mounds. Surf. Sci. Rep.Rep. 61, 1 (2006).

    Article  CAS  Google Scholar 

  18. X. Li, W. Cai, J. An, S. Kim, J. Nah, D. Yang, R. Piner, A. Velamakanni, I. Jung, E. Tutuc, S. Banerjee, L. Colombo, and R. Ruoff, Large-area synthesis of high-quality and uniform graphene films on copper foils. Science 324, 1312 (2009).

    Article  CAS  PubMed  Google Scholar 

  19. L. Sun and B. Hong, Chemical vapour deposition. Nat. Rev. Methods Primers 1, 5 (2021). https://doi.org/10.1038/s43586-020-00005-y.

    Article  CAS  Google Scholar 

  20. L. Gao, W. Ren, H. Xu, L. Jin, Z. Wang, T. Ma, L. Ma, Z. Zhang, Q. Fu, L. Peng, X. Bao, and H. Cheng, Repeated growth and bubbling transfer of graphene with millimeter-size single-crystal grains using platinum. Nat. Commun. 3, 1 (2012).

    Article  Google Scholar 

  21. L. Lin, B. Deng, J. Sun, H. Peng, and Z. Liu, Bridging the gap between reality and ideal in chemical vapor deposition growth of graphene. Chem. Rev. 118, 9281 (2018).

    Article  CAS  PubMed  Google Scholar 

  22. S. Karamat, S. Sonusen, Y. Celik, E.O. Uysalli, and A. Oral, Synthesis of few layer single crystal graphene grains on platinum by chemical vapour deposition. Prog. Nat. Sci. Mater. Int. 25(4), 291 (2015).

    Article  CAS  Google Scholar 

  23. S. Bhaviripudi, X. Jia, M. Dresselhaus, and J. Kong, Role of kinetic factors in chemical vapor deposition synthesis of uniform large area graphene using copper catalyst. Nano Lett. 10, 4128 (2010).

    Article  CAS  PubMed  Google Scholar 

  24. B. Zhang, W. Lee, R. Piner, I. Kholmanov, Y. Wu, H. Li, H. Ji, and R. Ruoff, Low-temperature chemical vapor deposition growth of graphene from toluene on electropolished copper foils. ACS Nano 6, 2471 (2012).

    Article  CAS  PubMed  Google Scholar 

  25. P. Zhao, A. Kumamoto, S. Kim, X. Chen, B. Hou, S. Chiashi, E. Einarsson, Y. Ikuhara, and S. Maruyama, Self-limiting chemical vapor deposition growth of monolayer graphene from ethanol. J. Phys. Chem. C 117, 10755 (2013).

    Article  CAS  Google Scholar 

  26. A. Gnisci, G. Faggio, G. Messina, J. Kwon, J. Lee, G. Lee, T. Dikonimos, N. Lisi, and A. Capasso, Ethanol-CVD Growth of sub-mm single-crystal graphene on flat Cu Surfaces. J. Phys. Chem. C 122, 28830 (2018).

    Article  CAS  Google Scholar 

  27. Faggio G., Capasso A., Malara A., Leoni E., Nigro M. A., Santangelo S., Messina, T. Dikonimos, F. Buonocore, and N. Lisi. (2014). Fast growth of polycrystalline graphene by chemical vapor deposition of ethanol on copper. In: 2014 IEEE 9th Nanotechnology Materials and Devices Conference (NMDC) (pp. 69-72). IEEE.

  28. S. Chaitoglou and E. Bertran, Control of the strain in chemical vapor deposition-grown graphene over copper via H2 flow. J. Phys. Chem. C 120, 25572 (2016).

    Article  CAS  Google Scholar 

  29. G. Faggio, G. Messina, C. Lofaro, N. Lisi, and A. Capasso, Recent advancements on the CVD of graphene on copper from ethanol vapor. Journal of Carbon Research. 6, 14 (2020).

    Article  CAS  Google Scholar 

  30. P. Bøggild, Research on scalable graphene faces a reproducibility gap. Nat. Commun. 14, 1 (2023).

    Article  Google Scholar 

  31. N. Lisi, T. Dikonimos, F. Buonocore, M. Pittori, R. Mazzaro, R. Rizzoli, S. Marras, and A. Capasso, Contamination-free graphene by chemical vapor deposition in quartz furnaces. Sci. Rep. 7, 1 (2017).

    Article  CAS  Google Scholar 

  32. I. Ruiz, W. Wang, A. George, C. Ozkan, and M. Ozkan, Silicon oxide contamination of graphene sheets synthesized on copper substrates via chemical vapor deposition. Adv. Sci. Eng. Med. 6, 1 (2014).

    Article  Google Scholar 

  33. G. Van Tendeloo, J. Van Landuyt, and S. Amelinckx, The α→ β phase transition in quartz and AlPO4 as studied by electron microscopy and diffraction. Physica Status Solidi (a) 33(2), 723 (1976).

    Article  Google Scholar 

  34. A. Wright and M. Lehmann, The structure of quartz at 25 and 590°C determined by neutron diffraction. J. Solid State Chem. 36, 371 (1981).

    Article  CAS  Google Scholar 

  35. B. Bunker, Molecular mechanisms for corrosion of silica and silicate glasses. J. Non Cryst. Solids 179, 300 (1994).

    Article  CAS  Google Scholar 

  36. M. Asif, Y. Tan, L. Pan, J. Li, M. Rashad, and M. Usman, Thickness controlled water vapors assisted growth of multilayer graphene by ambient pressure chemical vapor deposition. J. Phys. Chem. C 119, 3079 (2015).

    Article  CAS  Google Scholar 

  37. M. Losurdo, M. Giangregorio, P. Capezzuto, and G. Bruno, Graphene CVD growth on copper and nickel: role of hydrogen in kinetics and structure. Phys. Chem. Chem. Phys. 13, 20836 (2011).

    Article  CAS  PubMed  Google Scholar 

  38. F. Pawel, M. Rozmus, and B. Smuk, Properties of alumina ceramics obtained by conventional and non-conventional methods for sintering ceramics. J. Achiev. Mater. Manuf. Eng. 48, 29 (2011).

    Google Scholar 

  39. P.K. Panda, V.A. Jaleel, and G. Lefebvre, Thermal shock study of α-alumina doped with 0.2% MgO. Mater. Sci. Eng. A 485(1–2), 558 (2008).

    Article  Google Scholar 

  40. L. Lascovich, R. Giorgi, and S. Scaglione, Evaluation of the sp2/sp3 ratio in amorphous carbon structure by XPS and XAES. Appl. Surf. Sci. 47, 17 (1991).

    Article  CAS  Google Scholar 

  41. A. Pirkle, J. Chan, A. Venugopal, D. Hinojos, C.W. Magnuson, S. McDonnell, and R.M. Wallace, The effect of chemical residues on the physical and electrical properties of chemical vapor deposited graphene transferred to SiO2. Appl. Phys. Lett. 99(12), 122108 (2011).

    Article  Google Scholar 

  42. J. Park, W. Jung, D. Cho, J. Seo, Y. Moon, S. Woo, C. Lee, C. Park, and J. Ahn, Simple, green, and clean removal of a poly(methyl methacrylate) film on chemical vapor deposited graphene. Appl. Phys. Lett. 103, 171609 (2013).

    Article  Google Scholar 

  43. X. Liang, B. Sperling, I. Calizo, G. Cheng, C. Hacker, Q. Zhang, Y. Obeng, K. Yan, H. Peng, Q. Li, X. Zhu, H. Yuan, A. Walker, Z. Liu, L. Peng, and C. Richter, Toward clean and crackless transfer of graphene. ACS Nano 5, 9144 (2011).

    Article  PubMed  Google Scholar 

  44. A. Capasso, M. Francesco, E. Leoni, T. Dikonimos, F. Buonocore, L. Lancellotti, E. Bobeico, M. Sarto, A. Tamburrano, G. Bellis, and N. Lisi, Cyclododecane as support material for clean and facile transfer of large-area few-layer graphene. Appl. Phys. Lett. 105(11), 113101 (2014).

    Article  Google Scholar 

  45. A. Ferrari and J. Robertson, Raman spectroscopy of amorphous, nanostructured, diamondlike carbon, and nanodiamond. Philos. Trans. Royal Soc. London Series: A Math. Phys. Eng. Sci. 362, 2477 (2004).

    Article  CAS  Google Scholar 

  46. G. Rimkute, M. Gudaitis, J. Barkauskas, A. Zarkov, G. Niaura, and J. Gaidukevic, Synthesis and characterization of graphite intercalation compounds with sulfuric acid. Crystal 12, 421 (2022).

    Article  CAS  Google Scholar 

  47. A. Ferrari, J. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri, F. Mauri, S. Piscanec, D. Jiang, K. Novoseloc, S. Roth, and A. Geim, Raman spectrum of graphene and graphene layers. Phys. Rev. Lett. 97(18), 187401 (2006).

    Article  CAS  PubMed  Google Scholar 

  48. H. Zhou, W. Yu, L. Liu, R. Cheng, Y. Chen, X. Huang, Y. Liu, Y. Wang, Y. Huang, and X. Duan, Chemical vapour deposition growth of large single crystals of monolayer and bilayer graphene. Nat. Commun. 4, 2096 (2013).

    Article  PubMed  Google Scholar 

  49. F. Tuinstra and J.L. Koenig, Raman spectrum of graphite. J. Chem. Phys. 53(3), 1126 (1970).

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The author (R.B.) would like to acknowledge ENEA for providing the International Research Fellowship. G.D. would like to acknowledge UPES for providing the PhD fellowship and research facilities.

Author information

Authors and Affiliations

Authors

Contributions

Gargi Dhiman: investigation, data curation, methodology, writing—original draft preparation. Shalendra Kumar and Ranjeet Brajpuriya: supervision, writing—review & editing.

Corresponding authors

Correspondence to Gargi Dhiman or Ranjeet Brajpuriya.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dhiman, G., Kumar, S., Kumar, R. et al. An Improved CVD Design for Graphene Growth and Transfer Improvements. J. Electron. Mater. (2024). https://doi.org/10.1007/s11664-024-11117-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11664-024-11117-6

Keywords

Navigation