Skip to main content
Log in

Impact of B-site Substitution of Transition Metal (Fe and Mn) on the Structural, Electrical, and Magnetic Properties of Tungsten Bronze Ferroelectric Ceramic

  • 28th International Conference on Nuclear Tracks and Radiation Measurements
  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

The solid-state reaction approach was used to synthesize Ba0.95Sr0.05Ca5Ti2−xMxNb8O30 (where M represents Fe and Mn and x is 0 and 0.05) in order to compare the variations in the structural and dielectric properties of the ferroelectric material. The structural investigation was carried out using x-ray diffraction (XRD) and Fourier transform infrared (FTIR) spectroscopy. The orthorhombic structure with Pbcn space group revealed by the XRD investigation was validated by Rietveld refinement. The FTIR spectroscopy results were in good agreement with the reported phase. Analysis of the electrical properties was carried out by complex impedance spectroscopy. The results of transition metal doping with both Fe and Mn with regard to the dielectric permittivity as a function of frequency showed an improvement in the dielectric characteristics, while Mn exhibited a higher dielectric constant than Fe. The pure sample showed a lower transition temperature than the Fe- and Mn-doped sample. Analysis of the magnetic characteristics obtained from vibrating-sample magnetometry (VSM) revealed that doping enhanced the magnetic properties. This approach thus shows excellent potential for high-temperature operation, achieving good temperature stability via transition metal doping.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. K.C. Mathai, S. Vidya, A. John, S. Solomon, and J.K. Thomas, Structural, optical, and compactness characteristics of nanocrystalline CaNb2O6 synthesized through an autoigniting combustion method. Adv. Condens. Matter Phys. 2014, 1–6 (2014). https://doi.org/10.1155/2014/735878.

    Article  CAS  Google Scholar 

  2. P. Ganguly and A.K. Jha, Structural and electrical properties of Ba5−xCaxSmTi3Nb7O30 (x=0–5) ferroelectric ceramics. J. Alloy. Compd. 495, 7–12 (2010). https://doi.org/10.1016/j.jallcom.2010.01.118.

    Article  CAS  Google Scholar 

  3. X. Zhu, M. Fu, M.C. Stennett, P.M. Vilarinho, I. Levin, C.A. Randall, J. Gardner, F.D. Morrison, and I.M. Reaney, A crystal-chemical framework for relaxor versus normal ferroelectric behavior in tetragonal tungsten bronzes. Chem. Mater. 27, 3250–3261 (2015). https://doi.org/10.1021/acs.chemmater.5b00072.

    Article  CAS  Google Scholar 

  4. A. Rotaru and F.D. Morrison, Vogel-Fulcher analysis of relaxor dielectrics with the tetragonal tungsten bronze structure: Ba6MNb9O30 (M = Ga, Sc, In). J. Therm. Anal. Calorim.Calorim. 120, 1249–1259 (2015). https://doi.org/10.1007/s10973-014-4355-5.

    Article  CAS  Google Scholar 

  5. X.L. Zhu, K. Li, and X.M. Chen, Ferroelectric transition and low-temperature dielectric relaxations in filled tungsten bronzes. J. Am. Ceram. Soc. 97, 329–338 (2014). https://doi.org/10.1111/jace.12790.

    Article  CAS  Google Scholar 

  6. X.L. Zhu, S.Y. Wu, and X.M. Chen, Dielectric anomalies in (BaxSr1−x)4Nd2Ti4Nb6O30 ceramics with various radius differences between A1- and A2-site ions. Appl. Phys. Lett. (2007). https://doi.org/10.1063/1.2800789.

    Article  Google Scholar 

  7. M.C. Stennett, I.M. Reaney, G.C. Miles, D.I. Woodward, A.R. West, C.A. Kirk, and I. Levin, Dielectric and structural studies of Ba2MTi2Nb3O15 (BMTNO15, M=Bi3+, La3+, Nd3+, Sm3+, Gd3+) tetragonal tungsten bronze-structured ceramics. J. Appl. Phys. (2007). https://doi.org/10.1063/1.2205720.

    Article  Google Scholar 

  8. P. Ganguly and A.K. Jha, Investigations of structural, dielectric and electrical behaviour of calcium substituted Ba5NdTi3Nb7O30 ferroelectric ceramics. Integr. Ferroelectr.. Ferroelectr. 115, 149–156 (2010). https://doi.org/10.1080/10584587.2010.488566.

    Article  CAS  Google Scholar 

  9. X.L. Zhu, X.Q. Liu, and X.M. Chen, Crystal structure and dielectric properties of Sr5RTi3Nb7O30 (R=La, Nd, Sm, and Eu) tungsten bronze ceramics. J. Am. Ceram. Soc. 94, 1829–1836 (2011). https://doi.org/10.1111/j.1551-2916.2010.04327.x.

    Article  CAS  Google Scholar 

  10. X. Li Zhu, Y. Bai, X.Q. Liu, and X. Ming Chen, Ferroelectric phase transition and low-temperature dielectric relaxations in Sr4(La1−xSmx)2Ti4Nb6O30 ceramics. J. Appl. Phys. (2011). https://doi.org/10.1063/1.3664857.

    Article  Google Scholar 

  11. K. Li, X.L. Zhu, X.Q. Liu, and X.M. Chen, Effects of Ca-substitution on structural, dielectric, and ferroelectric properties of Ba5SmTi3Nb7O30 tungsten bronze ceramics. Appl. Phys. Lett. 101, 042906 (2012). https://doi.org/10.1063/1.4739841.

    Article  CAS  Google Scholar 

  12. R.N.P. Choudhary, S.R. Shannigrahi, and A.K. Singh, Ferroelectric phase transition in Ba5RTi3Nb7O30 [R=Nd, Eu, Gd] ceramics. Bull. Mater. Sci. 22, 975–979 (1999). https://doi.org/10.1007/bf02745689.

    Article  CAS  Google Scholar 

  13. P.P. Rao, S.K. Ghosh, and P. Koshy, Dielectric and ferroelectric properties of Ba3M3Ti5Nb5O30 (M= Sm or Y) ceramics. J. Mater. Sci.: Mater. Electr. 12, 729–732 (2001). https://doi.org/10.1023/A:1012944927315.

    Article  CAS  Google Scholar 

  14. S.R. Shannigrahi, R.N.P. Choudhary, A. Kumar, and H.N. Acharya, Phase transition in Ba5RTi3Nb7O30 (R = Dy, Sm) ferroelectric ceramics. J. Phys. Chem. Solids 59, 737–742 (1998). https://doi.org/10.1016/s0022-3697(97)00217-5.

    Article  CAS  Google Scholar 

  15. X.H. Zheng and X.M. Chen, Dielectric ceramics with tungsten-bronze structure in the BaO–Nd2O3–TiO2–Nb2O5 system. J. Mater. Res. 17, 1664–1670 (2002). https://doi.org/10.1557/jmr.2002.0245.

    Article  CAS  Google Scholar 

  16. P.R. Das, R.N.P. Choudhary, and B.K. Samantray, Diffuse ferroelectric phase transition in Na2PbSm2W2Ti4Nb4O30 ceramics. Mater. Chem. Phys. 101, 228–233 (2007). https://doi.org/10.1016/j.matchemphys.2006.04.005.

    Article  CAS  Google Scholar 

  17. B. Behera, P. Nayak, and R.N.P. Choudhary, Structural, dielectric and electrical properties of NaBa2X5O15 (X=Nb and Ta) ceramics. Mater. Lett. 59, 3489–3493 (2005). https://doi.org/10.1016/j.matlet.2005.06.019.

    Article  CAS  Google Scholar 

  18. J. Yeon, P.S. Halasyamani, and I.V. Kityk, Nonlinear optical effects in nano-sized ferroelectrics Sr6Ti2Nb(Ta)8O30. Mater. Lett. 62, 1082–1084 (2008). https://doi.org/10.1016/j.matlet.2007.07.048.

    Article  CAS  Google Scholar 

  19. V. Massarotti, D. Capsoni, M. Bini, C.B. Azzoni, M.C. Mozzati, P. Galinetto, and G. Chiodelli, Structural and spectroscopic properties of pure and doped Ba6Ti2Nb8O30 tungsten bronze. J. Phys. Chem. B 110, 17798–17805 (2006). https://doi.org/10.1021/jp063382p.

    Article  CAS  PubMed  Google Scholar 

  20. X.H. Zheng and X.M. Chen, Crystal structure and dielectric properties of ferroelectric ceramics in the BaO-Sm2O3-TiO2-Nb2O5 system. Solid State Commun.Commun. 125, 449–454 (2003). https://doi.org/10.1016/s0038-1098(02)00709-3.

    Article  CAS  Google Scholar 

  21. L. Fang, H. Zhang, J.B. Yan, and W.M. Yang, Synthesis and dielectric properties of a new niobate Ba5NdTi3Nb7O30. Chin. J. Inorg. Chem. 18(11), 1131–1134 (2002).

    CAS  Google Scholar 

  22. A. Bendahhou, P. Marchet, A. El-Houssaine, S. El Barkany, and M. Abou-Salama, Relationship between structural and dielectric properties of Zn-substituted Ba5CaTi2−xZnxNb8O30 tetragonal tungsten bronze. CrystEngComm 23, 163–173 (2021). https://doi.org/10.1039/d0ce01561j.

    Article  CAS  Google Scholar 

  23. A. Bendahhou, P. Marchet, S. El Barkany, and M. Abou-salama, Structural and impedance spectroscopic study of Zn-substituted Ba5CaTi2Nb8O30 tetragonal tungsten bronze ceramics. J. Alloy. Compd. 882, 160716 (2021). https://doi.org/10.1016/j.jallcom.2021.160716.

    Article  CAS  Google Scholar 

  24. S. Jindal, A. Vasishth, S. Devi, N. Aggarwal, and K.K. Kushwah, Investigation of structural, ferroelectric and magnetic properties of iron doped tungsten bronze multiferroic ceramics. Physica B B 595, 412341 (2020). https://doi.org/10.1016/j.physb.2020.412341.

    Article  CAS  Google Scholar 

  25. S. Jindal, A. Vashishth, S. Devi, and K. Kumar Kushwah, Prospective features of multiferroic tungsten bronze ceramics and its futuristic applications. Mater. Today: Proc. 51, 1252–1258 (2022). https://doi.org/10.1016/j.matpr.2021.07.351.

    Article  CAS  Google Scholar 

  26. S. Jindal, N. Aggarwal, A. Vasishth, and A. Sharma, Investigation of tungsten bronze ferroelectric ceramic by conventional and mechanical activation processes. Mater. Today: Proc. 68, 886–890 (2022). https://doi.org/10.1016/j.matpr.2022.06.424.

    Article  CAS  Google Scholar 

  27. S. Jindal, S. Devi, A. Vasishth, K.M. Batoo, and G. Kumar, Interdependence between electrical and magnetic properties of polycrystalline cobalt-substituted tungsten bronze multiferroic ceramics. J. Adv. Dielectr.Dielectr. 08, 1850002 (2018). https://doi.org/10.1142/s2010135x18500029.

    Article  CAS  Google Scholar 

  28. P. Sahoo, A. Panigrahi, S. Patri, and R. Choudhary, Structural, dielectric, electrical and piezoelectric properties of Ba4SrRTi3V7O30 (R=Sm, Dy) ceramics. Open Phys. (2008). https://doi.org/10.2478/s11534-008-0112-3.

    Article  Google Scholar 

  29. A. Bendahhou, K. Chourti, R. El Bouayadi, S. El Barkany, and M. Abou-Salama, Structural, dielectric and impedance spectroscopy analysis of Ba5CaTi1.94Zn0.06Nb8O30ferroelectric ceramic. RSC Adv. 10, 28007–28018 (2020). https://doi.org/10.1039/d0ra05163b.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. J.H. Joshi, D.K. Kanchan, M.J. Joshi, H.O. Jethva, and K.D. Parikh, Dielectric relaxation, complex impedance and modulus spectroscopic studies of mix phase rod like cobalt sulfide nanoparticles. Mater. Res. Bull. 93, 63–73 (2017). https://doi.org/10.1016/j.materresbull.2017.04.013.

    Article  CAS  Google Scholar 

  31. Y.J. Wong, J. Hassan, and M. Hashim, Dielectric properties, impedance analysis and modulus behavior of CaTiO3 ceramic prepared by solid state reaction. J. Alloy. Compd. 571, 138–144 (2013). https://doi.org/10.1016/j.jallcom.2013.03.123.

    Article  CAS  Google Scholar 

  32. P. Kamkum, N. Atiwongsangthong, R. Muanghlua, and N. Vittayakorn, Application of chicken eggshell waste as a starting material for synthesizing calcium niobate (Ca4Nb2O9) powder. Ceram. Int. 41, S69–S75 (2015). https://doi.org/10.1016/j.ceramint.2015.03.189.

    Article  CAS  Google Scholar 

  33. S. Chaudhary, S. Devi, and S. Jindal, Enhancing structural, optical, magnetic, dielectric and impedance properties of Ba0.95Sr0.05Ca5Ti2xFexNb8O30 tungsten bronze ferroelectric ceramic through Fe/Ti ratio on optimization for the advanced device applications. Mater. Chem. Phys. 312, 128580 (2024). https://doi.org/10.1016/j.matchemphys.2023.128580.

    Article  CAS  Google Scholar 

  34. L. Malik, G.S. Saini, and A. Tevatia, A self-sustained machine learning model to predict the in-flight mechanical properties of a rocket nozzle by inputting material properties and environmental conditions, Handbook of Sustainable Materials: Modelling, Characterization, and Optimization. (Boca Raton: CRC Press, 2023), pp. 431–456. https://doi.org/10.1201/9781003297772.

    Chapter  Google Scholar 

  35. L. Malik, S. Rawat, M. Kumar, and A. Tevatia, Simulation studies on aerodynamic features of Eurofighter Typhoon and Dassault Rafale combat aircraft. Mater. Today: Proc. 38, 191–197 (2021). https://doi.org/10.1016/j.matpr.2020.06.536.

    Article  Google Scholar 

  36. L. Malik, G.S. Saini, M. Malik, and A. Tevatia, Sustainability of wind turbine blade: instantaneous real-time prediction of its failure using machine learning and solution based on materials and design, Handbook of Sustainable Materials: Modelling, Characterization, and Optimization. (Boca Raton: CRC Press, 2023), pp. 399–430. https://doi.org/10.1201/9781003297772.

    Chapter  Google Scholar 

  37. L. Malik and A. Tevatia, Comparative analysis of aerodynamic characteristics of F16 and F22 combat aircraft using computational fluid dynamics. Def. Sci. J. 71, 137–145 (2021). https://doi.org/10.14429/dsj.71.15762.

    Article  CAS  Google Scholar 

  38. L. Malik, Novel concept of tailorable magnetic field and electron pressure distribution in a magnetic nozzle for effective space propulsion. Propul. Power Res. 12, 59–68 (2023). https://doi.org/10.1016/j.jppr.2023.02.002.

    Article  Google Scholar 

  39. L. Malik, In-flight plume control and thrust tuning in magnetic nozzle using tapered-coils system under the effect of density gradient. IEEE Trans. Plasma Sci. 51, 1325–1333 (2023).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sheela Devi.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chaudhary, S., Devi, S., Jindal, S. et al. Impact of B-site Substitution of Transition Metal (Fe and Mn) on the Structural, Electrical, and Magnetic Properties of Tungsten Bronze Ferroelectric Ceramic. J. Electron. Mater. (2024). https://doi.org/10.1007/s11664-024-11083-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11664-024-11083-z

Keywords

Navigation