Skip to main content
Log in

Investigation of the Spectral, Hardness, Second-Order NLO and Electrical Characteristics of l-Arginine Hydrobromide Monohydrate Crystals for Laser Technology

  • Original Research Article
  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

Single crystal of l-arginine hydrobromide monohydrate (LAHBM) was grown by the slow evaporation technique at 30°C. The lattice parameters of LAHBM were determined from X-ray diffraction patterns, which revealed a monoclinic crystal structure. The optical band gap and other linear optical parameters were evaluated by optical studies. Vickers microhardness study was carried out to reveal the mechanical properties including the hardness and work hardening coefficient of the grown crystal. The second harmonic generation (SHG) efficiency of the LAHBM crystal was found using a Kurtz–Perry powder setup with a Nd:YAG laser. Other studies including laser damage threshold (LDT), calculation of electronic polarizability, Fermi energy and plasma energy, impedance study, Fourier transform infrared (FTIR) study and dielectric study were carried out for the LAHBM grown crystal.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  1. K. Kirubavathi, K. Selvaraju, R. Valluvan, N. Vijayan, and S. Kumararaman, Synthesis, growth, structural, spectroscopic and optical studies of a new semiorganic nonlinear optical crystal: l-valine hydrochloride. Spectrochim. Acta. A. Mol. Biomol. Spectrosc. 69, 1283 (2008)

    Article  CAS  PubMed  Google Scholar 

  2. R. Ittyachan, A. Arunkumar, and G. Bhagavannarayana, Crystalline perfection and optical studies of l-Histidinium dihydrogen phosphate orthophosphoric acid (LHDP) single crystals. Opt. Mater. 48, 156 (2015)

    Article  CAS  Google Scholar 

  3. R. Ramesh Babu, N. Vijayan, R. Gopalakrishna, and P. Ramasamy, Growth and characterization of l-lysine monohydrochloride dihydrate (l-lmhcl) single crystal. Cryst. Res. Tech. 41, 405 (2006)

    Article  Google Scholar 

  4. S.P. Rathee, S.M.B. Dhas, B. Singh, I. Bdikin, and D.S. Ahlawat, Investigations on crystal perfection, mechanical and thermo-electric properties of l-ornithine monohydrochloride single crystal: a promising material for nonlinear optical applications. Mater. Chem. Phys. 200, 376 (2017)

    Article  CAS  Google Scholar 

  5. T. Sivakumar, R. Anbarasan, J. Kalyana Sundar, and M. Anna Lakshmi, Enhancing the SHG effect of zinc chloride-doped DAST single crystals: new potential materials for nonlinear optical device applications. J. Mater. Sci. Mater. Electron. 31, 12943 (2020)

    Article  CAS  Google Scholar 

  6. R. Anbarasan and J. Kalyana Sundar, Experimental and quantum chemical investigation on imidazolium trifluoroacetate single crystal for optoelectronic applications. J. Mater. Sci. Mater. Electron. 30, 10224 (2019)

    Article  CAS  Google Scholar 

  7. Sonia, N. Vijayan, M. Vij, A. Krishna, H. Yadav, K.K. Maurya, S.A.M.B. Dhas, and P. Kumar, An efficient piezoelectric single-crystal l-argininium phosphite: structural, Hirshfeld, electrical and mechanical analyses for NLO applications. Appl. Phys. A 125, 363 (2019)

    Article  CAS  Google Scholar 

  8. N. Saravanan, S. Santhanakrishnan, S. Suresh, S.S.J. Dhas, P. Jayaprakash, and V. Chithambaram, Crystal growth and investigation of novel semi organic single crystal: l-malic acid sodium nitrate for photonic applications. J. Mater. Sci. Mater. Electron. 29, 18449 (2018)

    Article  CAS  Google Scholar 

  9. S.P. Rathee, D.S. Ahlawat, S.M.B. Dhas, K.K. Maurya, B. Singh, and I. Bdikin, Investigation on key properties of solution grown l-Leucine hydrobromide single crystal: a semi-organic NLO material. Mater. Sci. Eng. B 264, 114927 (2021)

    Article  CAS  Google Scholar 

  10. T. Sivakumar, P. Eniya, J. Kalyana Sundar, A. Thirunavukkarasu, M. Anna Lakshmi, and G. Kanthimathi, Investigation on the effects of MnCl2 doping on structural and optical properties of DAST single crystals as materials for second order nonlinear optics. Cryst. Res. Technol. 56, 2100016 (2021)

    Article  CAS  Google Scholar 

  11. D. Xu, M. Jiang, and Z. Tan, A new phase matchable nonlinear optical crystal l-arginine phosphate monohydrate. Acta Chem. Sinica 41, 570 (1983)

    CAS  Google Scholar 

  12. T. Sasaki, A. Yokotani, K. Fujioka, T. Yamanaka, and S. Nakai, Synthesis and second harmonic generation of deutrated l-Arginine phosphate monohydrate crystal. Technol. Rep. Osaka Univ. 39, 25 (1989)

    CAS  Google Scholar 

  13. A. Yokotani, T. Sasaki, K. Yoshida, and S. Nakai, Extremely high damage threshold of a new nonlinear crystal Larginine phosphate and its deuterium compound. Appl. Phys. Lett. 55, 2692 (1989)

    Article  CAS  Google Scholar 

  14. S.B. Monaco, L.E. Davis, S.P. Velsko, F.T. Wang, D. Eimerl, and A. Zalkin, Synthesis and characterization of chemical analogs of l-arginine phosphate. J. Cryst. Growth 85, 252 (1987)

    Article  CAS  Google Scholar 

  15. S. Haussuhl, J. Chrosch, F. Gnanam, E. Fiorentini, K. Recker, and F. Wallrafens, Crystal growth and physical properties of monoclinic l-arginine hydrochloride monohydrate, C6H14O2N4HCl · H2O, and l-arginine hydrobromide monohydrate, C6H14O2N4HBr · H2O. Cryst. Res. Technol. 25, 617 (1990)

    Article  Google Scholar 

  16. S.K. Mazumdar and R. Srinivasan, The crystal structure of l-arginine monohydrobromide monohydrate. Zeitschrift für Kristallographie-Cryst. Mater. 123, 186 (1966)

    Article  CAS  Google Scholar 

  17. B.K. Periyasamy, R.S. Jebas, N. Gopalakrishnan, and T. Balasubramanian, Development of NLO tunable band gap organic devices for optoelectronic applications. Mater. Lett. 6, 4246 (2007)

    Article  Google Scholar 

  18. G. Anandha Babu and P. Ramasamy, Synthesis, crystal growth and characterization of novel semiorganic nonlinear optical crystal: Dichlorobis(l-proline)zinc(II). Mater. Chem. Phys. 113, 727 (2009)

    Article  Google Scholar 

  19. A.I. Arbab, On the optical conductivity. Optik 194, 163067 (2019)

    Article  CAS  Google Scholar 

  20. J.R. Pandey and S. Wagle, Vicker’s microhardness studies and 1H-NMR spectral analysis of an organic nlo material. IJARIIE 3, 1433 (2017)

    Google Scholar 

  21. W.F. Gale, T.C. Totemeier, Smithells Metals Reference Book, 8th edn. (Elsevier Butterworth-Heinemann, 2004)

  22. E. Meyer, Contribution to the knowledge of hardness and hardness testing. Zeitschrift Des Vereines Deutscher Ingenieure 52, 740 (1908)

    Google Scholar 

  23. E.M. Onitsch, The present status of testing the hardness of materials. Mikroskopie 95, 12 (1956)

    Google Scholar 

  24. R. Robert, C. Justin Raj, S. Krishnan, R. Uthrakumar, S. Dinakaran, and S. Jerome Das, Spectral, optical and mechanical studies on l-histidine hydrochloride monohydrate(LHC) single crystals grown by unidirectional growth technique. Physica B 405, 3248 (2010)

    Article  CAS  Google Scholar 

  25. R. Sreedevi, G. Saravana Kumar, K. Amarsingh Bhabu, T. Balu, P. Murugakoothan, and T.R. Rajasekaran, Growth, structural, optical, mechanical and quantum chemical analysis of unidirectional grown bis(guanidinium) 5-sulfosalicylate (BGSSA) single crystal. Physica B Condens. Matter. 531, 21 (2018)

    Article  CAS  Google Scholar 

  26. K.D. Singer, Y. Wu, Second harmonic generation (SHG) as a characterization technique and phenomological probe for organic materials, Handbook of Organic Materials for Optical and (Opto) electronic Devices, (Woodhead Publishing, 2013)

  27. J. Xu, R.W. Boyd, and G.L. Fischer, Reference Module in Materials Science and Materials Engineering (Amsterdam: Elsevier, 2016)

    Google Scholar 

  28. P. Karuppasamy, V. Sivasubramani, M. Senthil Pandian, and P. Ramasamy, Growth and characterization of semi-organic third order nonlinear optical (NLO) potassium 3, 5-dinitrobenzoate (KDNB) single crystals. RSC Adv. 6, 109105 (2016)

    Article  CAS  Google Scholar 

  29. D.R. Penn, Wave-number-dependent dielectric function of semiconductors. Phys. Rev. 128, 2093 (1962)

    Article  CAS  Google Scholar 

  30. N.M. Ravindra and V.K. Srivastava, Electronic polarizability as a function of the penn gap in semiconductors. J. Infrared Phys. 20, 67 (1980)

    Article  CAS  Google Scholar 

  31. A. Kumar, B.P. Singh, R.N.P. Choudhary, and A.K. Thakur, Characterization of electrical properties of Pb-modified BaSnO3 using impedance spectroscopy. Mater. Chem. Phys. 99, 150 (2006)

    Article  CAS  Google Scholar 

  32. R.S. Krishnan, V.N. Sanakaranarayanan, and K. Krishnan, Raman and infrared spectra of amino acids. J. Indian Inst. Sci. 55, 66 (1973)

    CAS  Google Scholar 

  33. G. Herzberg, Infrared and Raman Spectra of Polyatomic Molecules, 6th printing (New York: Van Nostrand, 1945)

    Google Scholar 

  34. K. Arunkumar and S. Kalainathan, Synthesis, growth and characterization of organic nonlinear optical 3-(4-fluorophenyl)-1-(4-methoxyphenyl) single crystal grown by vertical Bridgman technique. Org. Electron. 77, 105516 (2020)

    Article  CAS  Google Scholar 

  35. P. Karuppasamy, T. Kamalesh, K. Anitha, S.A. Kalam, M.S. Pandian, P. Ramasamy, S. Verma, and S. Venugopal Rao, Synthesis, crystal growth, structure and characterization of a novel third order nonlinear optical organic single crystal: 2-amino 4,6-dimethyl pyrimidine 4-nitrophenol. Opt. Mater. 84, 475 (2018)

    Article  CAS  Google Scholar 

  36. P. Koteeswari, P. Mani, and S. Suresh, Optical and dielectric studies on l-valinium picrate single crystal. J. Cryst. Process Technol. 02, 117 (2012)

    CAS  Google Scholar 

  37. K.V. Rao and A. Smakula, Dielectric properties of alkaline earth fluoride single crystals. J. Appl. Phys. 37, 319 (1966)

    Article  CAS  Google Scholar 

  38. A.S.J. Lucia Rose, P. Selvarajan, and S. Perumal, Growth, structural, spectral, mechanical and dielectric characterization of RbCl-doped l-alanine hydrogen chloride monohydrate single crystals. Physica B 406, 412 (2011)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors express their gratitude to the authorities of the research centres including SAIF- IIT, Madras, ACIC—St. Joseph’s College, Tiruchirappalli, NCIF—National College, Tiruchirappalli, VIT-Vellore, Crescent Engineering College-Chennai and Alagappa University, Karaikudi for their valuable research support. Additionally, they would like to extend their sincere thanks to Ramco Institute of Technology for their support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Jeyapappa.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jeyapappa, K., Selvarajan, P. Investigation of the Spectral, Hardness, Second-Order NLO and Electrical Characteristics of l-Arginine Hydrobromide Monohydrate Crystals for Laser Technology. J. Electron. Mater. (2024). https://doi.org/10.1007/s11664-024-11017-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11664-024-11017-9

Keywords

Navigation