Skip to main content
Log in

Enhancement Mode AlGaN/GaN MISHEMT on Ultra-Wide Band Gap β-Ga2O3 Substrate for RF and Power Electronics

  • Original Research Article
  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

A numerical simulation-based high-performance metal–insulator–semiconductor high electron mobility transistors (MISHEMTs) on an ultra-wide band gap β-Ga2O3 (Eg ~ 4.8 eV) substrate is presented. β-Ga2O3 (beta gallium oxide) has gained significant attention in radio frequency (RF) and power electronics applications. GaN HEMTs on β-Ga2O3 substrates are emerging HEMT technology for future RF and power electronics. Enhancement mode AlGaN/GaN MISHEMTs on β-Ga2O3 are proposed and analyzed for their DC and RF performance for Lg = 0.8 µm using ATLAS TCAD. A MISHEMT based on a SiN (Al2O3) insulator exhibited a high drain current density (IDS) of 3.62 (3.7) A/mm, blocking voltage (VBR) of 898 (1505) V, transconductance (gm) of 1.09 (1.13) S/mm, and cut-off frequency (fT) of 49 (44) GHz. Moreover, the proposed MISHEMT exhibited a very low on-resistance of 5 Ω mm. Combined with a higher cut-off frequency and high breakdown voltage, the proposed MISHEMT is suitable for future power switching and RF applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. A. Udabe, I. Baraia-Etxaburu, and D.G. Diez, Gallium nitride power devices: a state of the art review. IEEE Access (2023). https://doi.org/10.1109/ACCESS.2023.3277200.

    Article  Google Scholar 

  2. N. Keshmiri, D. Wang, B. Agrawal, R. Hou, and A. Emadi, Current status and future trends of GaN HEMTs in electrified transportation. IEEE Access (2020). https://doi.org/10.1109/ACCESS.2020.2986972.

    Article  Google Scholar 

  3. L.H. Hsu, Y.Y. Lai, P.T. Tu, C. Langpoklakpam, Y.T. Chang, Y.W. Huang, W.C. Lee, A.J. Tzou, Y.J. Cheng, C.H. Lin, and H.C. Kuo, Development of GaN HEMTs fabricated on silicon, silicon-on-insulator, and engineered substrates and the heterogeneous integration. Micromachines (2021). https://doi.org/10.3390/mi12101159.

    Article  PubMed  PubMed Central  Google Scholar 

  4. K. Hoo Teo, Y. Zhang, N. Chowdhury, S. Rakheja, R. Ma, Q. Xie, E. Yagyu, K. Yamanaka, K. Li, and T. Palacios, Emerging GaN technologies for power, RF, digital, and quantum computing applications: recent advances and prospects. J. Appl. Phys. (2021). https://doi.org/10.1063/5.0061555.

    Article  Google Scholar 

  5. M. Meneghini, C. De Santi, I. Abid, M. Buffolo, M. Cioni, R.A. Khadar, L. Nela, N. Zagni, A. Chini, F. Medjdoub, and G. Meneghesso, GaN-based power devices: physics, reliability, and perspectives. J. Appl. Phys. (2021). https://doi.org/10.1063/5.0061354.

    Article  Google Scholar 

  6. Y. Zhou, Y. Zhong, H. Gao, S. Dai, J. He, M. Feng, Y. Zhao, Q. Sun, A. Dingsun, and H. Yang, p-GaN gate enhancement-mode HEMT through a high tolerance self-terminated etching process. IEEE J. Electron Devices Soc. (2017). https://doi.org/10.1109/JEDS.2017.2725320.

    Article  Google Scholar 

  7. N. Islam, M.F. Mohamed, M.F. Khan, S. Falina, H. Kawarada, and M. Syamsul, Reliability, applications and challenges of GaN HEMT technology for modern power devices: a review. Crystals (2022). https://doi.org/10.3390/cryst12111581.

    Article  Google Scholar 

  8. C.T. Ma and Z.H. Gu, Review of GaN HEMT applications in power converters over 500 W. Electronics (2019). https://doi.org/10.3390/electronics8121401.

    Article  Google Scholar 

  9. W. Yi-Feng, D. Kapolnek, J.P. Ibbetson, P. Parikh, B.P. Keller, and U.K. Mishra, Very-high power density AlGaN/GaN HEMTs. IEEE Trans. Electron Devices (2001). https://doi.org/10.1109/16.906455.

    Article  Google Scholar 

  10. C. Du, R. Ye, X. Cai, X. Duan, H. Liu, Y. Zhang, G. Qiu, and M. Mi, A review on GaN HEMTs: nonlinear mechanisms and improvement methods. J. Semicond. (2023). https://doi.org/10.1088/1674-4926/44/12/121801.

    Article  Google Scholar 

  11. S. Baskaran, M. Shunmugathammal, C. Sivamani, S. Ravi, P. Murugapandiyan, and N. Ramkumar, UWBG AlN/β-Ga2O3 HEMT on silicon carbide substrate for low loss portable power converters and RF applications. SILICON (2022). https://doi.org/10.1007/s12633-022-01846-w.

    Article  Google Scholar 

  12. P. Murugapandiyan, S.R. Kalva, V. Rajyalakshmi, B.A. Princy, Y.U. Tarauni, A. Fletcher, and M. Wasim, A, comparative analysis of GaN and InGaN/GaN coupling channel HEMTs on silicon carbide substrate for high linear RF applications. Micro Nanostruct. (2023). https://doi.org/10.1016/j.micrna.2023.207545.

    Article  Google Scholar 

  13. A. Revathy, J. Vijaya Kumar, P. Murugapandiyan, K. Mohd Wasim, N. Devi, and N. Ramkumar, Design and analysis of normally-off GaN-HEMT using β-Ga2O3 buffer for low-loss power converter applications. Micro Nanostruct. (2023). https://doi.org/10.1016/j.micrna.2023.207643.

    Article  Google Scholar 

  14. N. Ramkumar, E. Parthasarathy, and P. Murugapandiyan, Influence of high-k passivation layer on gate field plate AlGaN/GaN/AlGaN double heterojunction HEMT. SILICON (2022). https://doi.org/10.1007/s12633-022-01746-z.

    Article  Google Scholar 

  15. N. Ramkumar, E. Parthasarathy, and P. Murugapandiyan, Ultra-wide band gap Al0.1Ga0.9N double channel HEMT for RF applications. Int. J. RF Microw. Comput. Aided Eng. (2022). https://doi.org/10.1002/mmce.23360.

    Article  Google Scholar 

  16. G. Crupi, M. Latino, G. Gugliandolo, Z. Marinković, J. Cai, G. Bosi, A. Raffo, E. Fazio, and N. Donato, A comprehensive overview of the temperature-dependent modeling of the high-power GaN HEMT technology using mm-wave scattering parameter measurements. Electronics (2023). https://doi.org/10.3390/electronics12081771.

    Article  Google Scholar 

  17. L. Shen, R. Coffie, D. Buttari, S. Heikman, A. Chakraborty, A. Chini, S. Keller, S.P. DenBaars, and U.K. Mishra, High-power polarization-engineered GaN/AlGaN/GaN HEMTs without surface passivation. IEEE Electron Device (2004). https://doi.org/10.1109/LED.2003.821673.

    Article  Google Scholar 

  18. S. Huang, Q. Jiang, S. Yang, Z. Tang, and K.J. Chen, Mechanism of PEALD-grown AlN passivation for AlGaN/GaN HEMTs: compensation of interface traps by polarization charges. IEEE Electron Device Lett. (2013). https://doi.org/10.1109/LED.2012.2229106.

    Article  Google Scholar 

  19. B.K. Jebalin, A.S. Rekh, P. Prajoon, D. Godwinraj, N.M. Kumar, and D. Nirmal, Unique model of polarization engineered AlGaN/GaN based HEMTs for high power applications. Superlattices Microstruct. (2015). https://doi.org/10.1016/j.spmi.2014.10.038.

    Article  Google Scholar 

  20. C. De Santi, M. Meneghini, G. Meneghesso, and E. Zanoni, Review of dynamic effects and reliability of depletion and enhancement GaN HEMTs for power switching applications. IET Power Electron. (2018). https://doi.org/10.1049/iet-pel.2017.0403.

    Article  Google Scholar 

  21. R. Brown, D. Macfarlane, A. Al-Khalidi, X. Li, G. Ternent, H. Zhou, I. Thayne, and E. Wasige, A sub-critical barrier thickness normally-off AlGaN/GaN MOS-HEMT. IEEE Electron Device Lett. (2014). https://doi.org/10.1109/LED.2014.2334394.

    Article  Google Scholar 

  22. C. Beckmann, Z. Yang, J. Wieben, T. Zweipfennig, J. Ehrler, A. Kirchbrücher, H. Kalisch, and A. Vescan, Depletion-and enhancement-mode p-channel MISHFET based on GaN/AlGaN single heterostructures on sapphire substrates. IEEE J. Electron Devices Soc. (2023). https://doi.org/10.1109/JEDS.2023.3268205.

    Article  Google Scholar 

  23. Y.H. Chen, D. Ohori, M. Aslam, Y.J. Lee, Y. Li, and S. Samukawa, Enhancing the performance of E-mode AlGaN/GaN HEMTs with recessed gates through low-damage neutral beam etching and post-metallization annealing. IEEE Open J. Nanotechnol. (2023). https://doi.org/10.1109/OJNANO.2023.3306011.

    Article  Google Scholar 

  24. H. Lee, H. Ryu, J. Kang, and W. Zhu, High temperature operation of E-mode and D-mode AlGaN/GaN MIS-HEMTs with recessed gates. IEEE J. Electron Devices Soc. (2023). https://doi.org/10.1109/JEDS.2023.3253137.

    Article  Google Scholar 

  25. C.H. Wu, P.C. Han, Q.H. Luc, C.Y. Hsu, T.E. Hsieh, H.C. Wang, Y.K. Lin, P.C. Chang, Y.C. Lin, and E.Y. Chang, Normally-off GaN MIS-HEMT with F−doped gate insulator using standard ion implantation. IEEE J. Electron Devices Soc. (2018). https://doi.org/10.1109/JEDS.2018.2859769.

    Article  Google Scholar 

  26. J.S. Wu, C.C. Lee, C.H. Wu, M.L. Kao, Y.C. Weng, C.Y. Yang, Q.H. Luc, C.T. Lee, D. Ueda, and E.Y. Chang, E-mode GaN MIS-HEMT using ferroelectric charge trap gate stack with low dynamic on-resistance and high V th stability by field plate engineering. IEEE Electron Device Lett. (2021). https://doi.org/10.1109/LED.2021.3098726.

    Article  Google Scholar 

  27. Y. Wang, Y. Lv, X. Zhou, J. Yin, T. Han, G. Gu, X. Song, X. Tan, S. Dun, H. Guo, and Y. Fang, High-uniformity and high drain current density enhancement-mode AlGaN/GaN gates-seperating groove HFET. IEEE J. Electron Devices Soc. (2017). https://doi.org/10.1109/JEDS.2017.2778087.

    Article  Google Scholar 

  28. Y.C. Lin, Y.X. Huang, G.N. Huang, C.H. Wu, J.N. Yao, C.M. Chu, S. Chang, C.C. Hsu, J.H. Lee, K. Kakushima, and K. Tsutsui, Enhancement-mode GaN MIS-HEMTs with LaHfO x gate insulator for power application. IEEE Electron Device Lett. (2017). https://doi.org/10.1109/LED.2017.2722002.

    Article  Google Scholar 

  29. S.Y. Ho, C.H. Lee, A.J. Tzou, H.C. Kuo, Y.R. Wu, and J. Huang, Suppression of current collapse in enhancement mode GaN-based HEMTs using an AlGaN/GaN/AlGaN double heterostructure. IEEE Trans. Electron Devices (2017). https://doi.org/10.1109/TED.2017.2657683.

    Article  Google Scholar 

  30. R. Singh, T.R. Lenka, R.T. Velpula, B. Jain, H.Q. Bui, and H.P. Nguyen, A novel β‐Ga2O3 HEMT with f T of 166 GHz and X‐band P OUT of 2.91 W/mm. Int. J. Numer. Model. Electron. Netw. Devices Fields (2021). https://doi.org/10.1002/jnm.27946.

    Article  Google Scholar 

  31. S.J. Pearton, J. Yang, P.H. Cary, F. Ren, J. Kim, M.J. Tadjer, and M.A. Mastro, A review of Ga2O3 materials, processing, and devices. Appl. Phys. Rev. (2018). https://doi.org/10.1063/1.5006941.

    Article  Google Scholar 

  32. Y. Zhang, C. Joishi, Z. Xia, M. Brenner, S. Lodha, and S. Rajan, Demonstration of β-(AlxGa1−x)2O3/Ga2O3 double heterostructure field effect transistors. Appl. Phys. Lett. (2018). https://doi.org/10.1063/1.5037095.

    Article  PubMed  PubMed Central  Google Scholar 

  33. M. Ge, Y. Li, Y. Zhu, D. Chen, Z. Wang, and S. Tan, An improved design for e-mode AlGaN/GaN HEMT with gate stack β-Ga2O3/p-GaN structure. J. Appl. Phys. (2021). https://doi.org/10.1063/5.0051274.

    Article  Google Scholar 

  34. H. Xue, Q. He, G. Jian, S. Long, T. Pang, and M. Liu, An overview of the ultrawide band gap Ga2O3 semiconductor-based Schottky barrier diode for power electronics application. Nanoscale Res. Lett. (2018). https://doi.org/10.1186/s11671-018-2712-1.

    Article  PubMed  PubMed Central  Google Scholar 

  35. X.Q. Zheng, Y. Xie, J. Lee, Z. Jia, X. Tao, and P.X. Feng, Beta gallium oxide (β-Ga2O3) nanoelectromechanical transducer for dual-modality solar-blind ultraviolet light detection. APL Mater. (2019). https://doi.org/10.1063/1.5054625.

    Article  Google Scholar 

  36. Z. Galazka, β-Ga2O3 for wide-band gap electronics and optoelectronics. Semicond. Sci. Technol. (2018). https://doi.org/10.1088/1361-6641/aadf78.

    Article  Google Scholar 

  37. K. Tetzner, O. Hilt, A. Popp, S.B. Anooz, and J. Würfl, Challenges to overcome breakdown limitations in lateral β-Ga2O3 MOSFET devices. Microelectron. Reliab. (2020). https://doi.org/10.1016/j.microrel.2020.113951.

    Article  Google Scholar 

  38. A. Sarkar, Device simulation using Silvaco ATLAS tool, Technology computer aided design. (Boca Raton: CRC Press, 2018), pp. 203–252.

    Google Scholar 

  39. M. Kanamura, T. Ohki, T. Kikkawa, K. Imanishi, T. Imada, A. Yamada, and N. Hara, Enhancement-mode GaN MIS-HEMTs with n-GaN/i-AlN/n-GaN triple cap layer and high-k gate dielectrics. IEEE Electron Device Lett. (2010). https://doi.org/10.1109/LED.2009.2039026.

    Article  Google Scholar 

  40. Q. Hu, B. Hu, C. Gu, T. Li, S. Li, S. Li, X. Li, and Y. Wu, Improved current collapse in recessed AlGaN/GaN MOS-HEMTs by interface and structure engineering. IEEE Trans. Electron Devices (2019). https://doi.org/10.1109/TED.2019.2940749.

    Article  Google Scholar 

  41. L. Yang, M. Mi, B. Hou, J. Zhu, M. Zhang, Y. He, Y. Lu, Q. Zhu, X. Zhou, L. Lv, and Y. Cao, Improvement of subthreshold characteristic of gate-recessed AlGaN/GaN transistors by using dual-gate structure. IEEE Trans. Electron Devices (2017). https://doi.org/10.1109/TED.2017.2741001.

    Article  Google Scholar 

  42. M. Vadizadeh, M. Fallahnejad, M. Shaveisi, R. Ejlali, and F. Bajelan, Double gate double-channel AlGaN/GaN MOS HEMT and its applications to LNA with Sub-1 dB noise figure. SILICON (2023). https://doi.org/10.1007/s12633-022-02083-x.

    Article  Google Scholar 

  43. L.Q. Zhang, X.L. Wu, W.Q. Miao, Z.Y. Wu, Q. Xing, and P.F. Wang, Process of Au-free source/drain Ohmic contact to AlGaN/GaN HEMT. Crystals (2022). https://doi.org/10.3390/cryst12060826.

    Article  Google Scholar 

  44. C. Sivamani, P. Murugapandiyan, A. Mohanbabu, and A. Fletcher, High performance enhancement mode GaN HEMTs using β-Ga2O3 buffer for power switching and high frequency applications: a simulation study. Microelectronics (2023). https://doi.org/10.1016/j.mejo.2023.105946.

    Article  Google Scholar 

  45. S. Mohanty, Z. Jian, K. Khan, and E. Ahmadi, Demonstration of N-polar GaN MIS-HEMT with high-k atomic layer deposited HfO2 as gate dielectric. J. Electron. Mater. (2023). https://doi.org/10.1007/s11664-023-10222-2.

    Article  Google Scholar 

  46. P. Pal, Y. Pratap, and S. Kabra, Small-signal analysis of double-channel AlGaN/GaN HEMT and MOSHEMT with undoped barrier for microwave applications. J. Electron. Mater. (2022). https://doi.org/10.1007/s11664-022-09652-1.

    Article  Google Scholar 

  47. Y. Cheng, Y.H. Ng, Z. Zheng, and K.J. Chen, RF enhancement-mode-GaN gate HEMT on 200 mm-Si substrates. IEEE Electron Device Lett. (2022). https://doi.org/10.1109/LED.2022.3220693.

    Article  Google Scholar 

Download references

Acknowledgments

The authors acknowledge the Anil Neerukonda Institute of Technology and Sciences, Visakhapatnam, India-531 162 for providing the support and facility to carry out this research work.

Funding

Not applicable

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Murugapandiyan.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Murugapandiyan, P., Sri Rama Krishna, K., Revathy, A. et al. Enhancement Mode AlGaN/GaN MISHEMT on Ultra-Wide Band Gap β-Ga2O3 Substrate for RF and Power Electronics. J. Electron. Mater. (2024). https://doi.org/10.1007/s11664-024-11005-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11664-024-11005-z

Keywords

Navigation