Skip to main content
Log in

Effect of Oxygen Flow Rate, Post-annealing Temperature, and Different Electrolyte Concentrations on WO3 Thin Films Deposited by DC Magnetron Sputtering For Electrochromic Applications

  • Original Research Article
  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

In this work, tungsten oxide (WO3) films were deposited at room temperature and annealed for 2 h at 400°C. The electrochromic and electrochemical properties were studied for two different electrolytes. The films were deposited at different oxygen flow rates of 2, 4, and 6 standard cubic centimeters per minute (SCCM). X-ray diffraction analysis revealed structural characterization of amorphous and crystalline phases. UV-visible spectroscopy optical transmittance revealed 91% transmittance, and energy-dispersive x-ray spectroscopy (EDS) analysis revealed the absence of impurities and the presence of W and O. An electrochemical analyzer was used to characterize the deposited and annealed WO3 films immersed in the two different electrolyte solutions (H2SO4 and LiClO4 with oxygen flow rates ranging from 2 SCCM to 6 SCCM). It was found that the H2SO4 electrolyte of an annealed WO3 thin film at 2 SCCM demonstrated high coloring efficiency of 50.18 cm2/C, and the LiClO4 electrolyte of an annealed WO3 thin film at 4 SCCM demonstrated high coloring efficiency of 20.06 cm2/C.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

Data availability

All data generated or analyzed during this study are included in this article and are available from the author.

References

  1. T. Brousse, D. Bélanger, K. Chiba, M. Egashira, F. Favier, J. Long, J.R. Miller, M. Morita, K. Naoi, P. Simon, and W. Sugimoto, Materials for electrochemical capacitors. Springer Handbooks (2017). https://doi.org/10.1007/978-3-662-46657-5_16.

    Article  Google Scholar 

  2. R.S. Vemuri, M.H. Engelhard, and C.V. Ramana, Correlation between surface chemistry, density, and band gap in nanocrystalline WO3 thin films. ACS Appl. Mater. Interfaces 4, 1371 (2012). https://doi.org/10.1021/am2016409.

    Article  CAS  PubMed  Google Scholar 

  3. C.G. Granqvist, Oxide electrochromics: an introduction to devices and materials. Sol. Energy Mater. Sol. Cells 99, 1 (2012). https://doi.org/10.1016/j.solmat.2011.08.021.

    Article  CAS  Google Scholar 

  4. J. Gupta, H. Shaik, and K.N. Kumar, A review on the prominence of porosity in tungsten oxide thin films for electrochromism. Ionics (Kiel) 27, 2307 (2021). https://doi.org/10.1007/s11581-021-04035-8.

    Article  CAS  Google Scholar 

  5. J. Gutpa, H. Shaik, K.N. Kumar, and S. Abdul, Materials Science in Semiconductor Processing PVD techniques proffering avenues for fabrication of porous tungsten oxide (WO3) thin films : a review. Mater. Sci. Semicond. Process. 143, 106534 (2022). https://doi.org/10.1016/j.mssp.2022.106534.

    Article  CAS  Google Scholar 

  6. M. Grätzel, Ultrafast colour displays. Nature 409, 575 (2001). https://doi.org/10.1038/35054655.

    Article  PubMed  Google Scholar 

  7. C.G. Granqvist, Electrochromics for smart windows: oxide-based thin films and devices. Thin Solid Films 564, 1 (2014). https://doi.org/10.1016/j.tsf.2014.02.002.

    Article  CAS  Google Scholar 

  8. G.A. Niklasson and C.G. Granqvist, Electrochromics for smart windows :thin films of tungsten oxide and nickel oxide, and devices based on these. J. Mater. Chem. 17(2), 127 (2007). https://doi.org/10.1039/b612174h.

    Article  CAS  Google Scholar 

  9. C.G. Granqvist, Electrochromic tungsten oxide films: review of progress 1993–1998. Sol. Energy Mater. Sol. Cells 60, 201 (2000). https://doi.org/10.1016/S0927-0248(99)00088-4.

    Article  CAS  Google Scholar 

  10. H. Simchi, B.E. McCandless, T. Meng, and W.N. Shafarman, Structural, optical, and surface properties of WO3 thin films for solar cells. J. Alloy. Compd. 617, 609 (2014). https://doi.org/10.1016/j.jallcom.2014.08.047.

    Article  CAS  Google Scholar 

  11. Y.A.K. Reddy, B. Ajitha, A. Sreedhar, and E. Varrla, Enhanced UV photodetector performance in bi-layer TiO2/WO3 sputtered films. Appl. Surf. Sci. 494, 575 (2019). https://doi.org/10.1016/j.apsusc.2019.07.124.

    Article  CAS  Google Scholar 

  12. A.V. Shchegolkov, S.H. Jang, A.V. Shchegolkov, Y.V. Rodionov, A.O. Sukhova, and M.S. Lipkin, A brief overview of electrochromic materials and related devices: a nanostructured materials perspective. Nanomaterials 11, 2376 (2021). https://doi.org/10.3390/nano11092376.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. A.R. GV, H. Shaik, K.N. Kumar, V. Madhavi, H.D. Shetty, S.A. Sattar, M. Dhananjaya, B. Daruka Prasad, G.R. Kumar, and B.H. Doreswamy, Structural and electrochemical studies of WO3 coated TiO2 nanorod hybrid thin films for electrochromic applications. Optik 277, 170694 (2023). https://doi.org/10.1016/j.ijleo.2023.170694.

    Article  CAS  Google Scholar 

  14. K. Naveen Kumar, H. Shaik, A. Pawar, L.N. Chandrashekar, S.A. Sattar, G. Nithya, R. Imran Jafri, V. Madhavi, J. Gupta, and G.V. Ashok Reddy, Effect of annealing and oxygen partial pressure on the RF sputtered WO3 thin films for electrochromic applications. Mater. Today: Proc. 59, 339 (2022). https://doi.org/10.1016/j.matpr.2021.11.185.

    Article  CAS  Google Scholar 

  15. K. Naveen Kumar, H. Shaik, L.N. Chandrashekar, P. Aishwarya, S. Abdul Sattar, G. Nithya, V. Madhavi, R. Imran Jafri, J. Gupta, and G.V. Ashok Reddy, On ion transport during the electrochemical reaction on plane and GLAD deposited WO3 thin films. Mater. Today Proc. 59, 275 (2022). https://doi.org/10.1016/j.matpr.2021.11.113.

    Article  CAS  Google Scholar 

  16. L. Geng, Gas sensitivity study of polypyrrole/WO3 hybrid materials to H2S. Synth. Met. 160, 1708 (2010). https://doi.org/10.1016/j.synthmet.2010.06.005.

    Article  CAS  Google Scholar 

  17. M. Trapatseli, D. Vernardou, P. Tzanetakis, and E. Spanakis, Field emission properties of low-temperature, hydrothermally grown tungsten oxide. ACS Appl. Mater. Interfaces 3, 2726 (2011). https://doi.org/10.1021/am200519w.

    Article  CAS  PubMed  Google Scholar 

  18. R. Mukherjee and P.P. Sahay, Improved electrochromic performance in sprayed WO3 thin films upon Sb doping. J. Alloy. Compd. 660, 336 (2016). https://doi.org/10.1016/j.jallcom.2015.11.138.

    Article  CAS  Google Scholar 

  19. N. Naseri, R. Azimirad, O. Akhavan, and A.Z. Moshfegh, Improved electrochromical properties of sol-gel WO3 thin films by doping gold nanocrystals. Thin Solid Films 518, 2250 (2010). https://doi.org/10.1016/j.tsf.2009.08.001.

    Article  CAS  Google Scholar 

  20. J. Thangala, S. Vaddiraju, R. Bogale, R. Thurman, T. Powers, B. Deb, and M.K. Sunkara, Large-scale, hot-filament-assisted synthesis of tungsten oxide and related transition metal oxide nanowires. Small 3, 890 (2007). https://doi.org/10.1002/smll.200600689.

    Article  CAS  PubMed  Google Scholar 

  21. J. Zhang, X.L. Wang, X.H. Xia, C.D. Gu, Z.J. Zhao, and J.P. Tu, Enhanced electrochromic performance of macroporous WO3 films formed by anodic oxidation of DC-sputtered tungsten layers. Electrochim. Acta 55, 6953 (2010). https://doi.org/10.1016/j.electacta.2010.06.082.

    Article  CAS  Google Scholar 

  22. K. Naveen Kumar, H. Shaik, Sathish, V. Madhavi, and S. Abdul Sattar, On the bonding and electrochemical performance of sputter deposited WO3 thin films. IOP Conf. Ser. Mater. Sci. Eng. 872, 012147 (2020). https://doi.org/10.1088/1757-899X/872/1/012147.

    Article  Google Scholar 

  23. K.N. Kumar, S.A. Sattar, G.V. Ashok Reddy, R.I. Jafri, R. Premkumar, M.R. Meera, A.A. Ahamed, M. Muthukrishnan, M. Dhananjaya, and A.M. Tighezza, Structural, optical, and electrochromic properties of RT and annealed sputtered tungsten trioxide (WO3) thin films for electrochromic applications by using GLAD technique. J. Mater. Sci. Mater. Electron. 34, 1934 (2023). https://doi.org/10.1007/s10854-023-11285-x.

    Article  CAS  Google Scholar 

  24. K.N. Kumar, G. Nithya, H. Shaik, L.N. Chandrashekar, P. Aishwarya, and A.S. Pawar, Optical and electrochromic properties of DC magnetron sputter deposited tungsten oxide thin films at different electrolyte concentrations and vertex potentials for smart window applications. J. Mater. Sci. Mater. Electron. 34, 789 (2023). https://doi.org/10.1007/s10854-023-10180-9.

    Article  CAS  Google Scholar 

  25. A.R. GV, K.N. Kumar, S. Abdul, H.D. Shetty, N. Guru, R.I. Jafri, C. Devaraja, B.C. Manjunatha, C.S. Kaliprasad, R. Premkumar, and S. Ansar, Physica B: condensed Matter Effect of post annealing on DC magnetron sputtered tungsten oxide (WO3) thin films for smartwindow applications. Phys. B Condens Matter 664, 414996 (2023). https://doi.org/10.1016/j.physb.2023.414996.

    Article  CAS  Google Scholar 

  26. K.N. Kumar, H. Shaik, J. Gupta, S. Abdul, I. Jafri, A. Pawar, V. Madhavi, A.R. GV, and G. Nithya, Sputter deposited tungsten oxide thin films and nanopillars: electrochromic perspective. Mater. Chem. Phys. 278, 125706 (2022). https://doi.org/10.1016/j.matchemphys.2022.125706.

    Article  CAS  Google Scholar 

  27. K. Naveen Kumar, G. Nithya, H. Shaik, B. Hemanth, M. Chethana, K. Kishore, V. Madhavi, R.I. Jafri, S.A. Sattar, J. Gupta, and G.V. Ashok Reddy, Simulation and fabrication of tungsten oxide thin films for electrochromic applications. Phys. B Condens Matter 640, 413932 (2022). https://doi.org/10.1016/j.physb.2022.413932.

    Article  CAS  Google Scholar 

  28. K.N. Kumar, S.A. Sattar, H. Shaik, A.R. GV, R.I. Jafri, M. Dhananjaya, A.S. Pawar, N.G. Prakash, R. Premkumar, S. Ansar, L.N. Chandrashekar, and P. Aishwarya, Effect of partial pressure of oxygen, target current, and annealing on DC sputtered tungsten oxide (WO3) thin films for electrochromic applications. Solid State Ion 399, 116275 (2023). https://doi.org/10.1016/j.ssi.2023.116275.

    Article  CAS  Google Scholar 

  29. G.V. Ashok Reddy, H. Shaik, K. Naveen Kumar, R. Imran Jafri, S.A. Sattar, J. Gupta, and B.H. Doreswamy, Thickness dependent tungsten trioxide thin films deposited using DC magnetron sputtering for electrochromic applications. Mater. Today Proc. (2022). https://doi.org/10.1016/j.matpr.2022.11.134.

    Article  Google Scholar 

  30. K. Naveen Kumar, H. Shaik, V. Madhavi, R. Imran Jafri, J. Gupta, G. Nithya, S.A. Sattar, and G.V. Ashok Reddy, Glancing angle sputter deposited tungsten trioxide (WO3) thin films for electrochromic applications. Appl. Phys. A Mater. Sci. Process. 128, 1 (2022). https://doi.org/10.1007/s00339-022-06124-5.

    Article  CAS  Google Scholar 

  31. G. Nithya, K.N. Kumar, R. Sai Yashwanth, W. Baig, S.V. Sai Ganesh, S. Hanvish Kumar, Simulation, deposition, and characterization of WO3 and multilayered WO3/Ag thin film structure for smart window applications, in: 2023 International Conference on Recent Advances in Science and Engineering Technology (ICRASET, IEEE, 2023), pp. 1–3. https://doi.org/10.1109/ICRASET59632.2023.10420072.

  32. V. Madhavi, P. Kondaiah, H. Shaik, K.N. Kumar, T.S.S. Kumar Naik, G.M. Rao, and P.C. Ramamurthy, Fabrication of porous 1D WO3 NRs and WO3/BiVO4 hetero junction photoanode for efficient photoelectrochemical water splitting. Mater. Chem. Phys. 274, 125095 (2021). https://doi.org/10.1016/j.matchemphys.2021.125095.

    Article  CAS  Google Scholar 

  33. K.N. Kumar, G. Nithya, H. Shaik, L.N. Chandrashekar, P. Aishwarya, and A.S. Pawar, Optical and electrochromic properties of DC magnetron sputter deposited tungsten oxide thin films at different electrolyte concentrations and vertex potentials for smart window applications. J. Mater. Sci. Mater. Electron. 34, 789 (2023). https://doi.org/10.1007/s10854-023-10180-9.

    Article  CAS  Google Scholar 

  34. J. Gupta, H. Shaik, K.N. Kumar, S.A. Sattar, and G.V.A. Reddy, Optimization of deposition rate for E-beam fabricated tungsten oxide thin films towards profound electrochromic applications. Appl. Phys. A Mater. Sci. Process. 128, 1 (2022). https://doi.org/10.1007/s00339-022-05609-7.

    Article  CAS  Google Scholar 

  35. J. Gutpa, H. Shaik, K. Naveen Kumar, and S.A. Sattar, Optimization of GLAD angle for E-beam-fabricated Tungsten oxide (WO3) thin films towards novel electrochromic behavior. J. Electron. Mater. (2022). https://doi.org/10.1007/s11664-022-10036-8.

    Article  Google Scholar 

  36. J.Z. Ou, S. Balendhran, M.R. Field, D.G. McCulloch, A.S. Zoolfakar, R.A. Rani, S. Zhuiykov, A.P. O’Mullane, and K. Kalantar-Zadeh, The anodized crystalline WO3 nanoporous network with enhanced electrochromic properties. Nanoscale 4, 5980 (2012). https://doi.org/10.1039/c2nr31203d.

    Article  CAS  PubMed  Google Scholar 

  37. J. Zhang, J.P. Tu, X.H. Xia, X.L. Wang, and C.D. Gu, Hydrothermally synthesized WO3 nanowire arrays with highly improved electrochromic performance. J. Mater. Chem. 21, 5492 (2011). https://doi.org/10.1039/c0jm04361c.

    Article  CAS  Google Scholar 

  38. A.R. GV, K. Naveen Kumar, H. Shaik, H.D. Shetty, R. Imran Jafri, S. Abdul Sattar, K. Kamath, and B.H. Doreswamy, Growth of cerium oxide nanorods by hydrothermal method and electrochromic properties of CeO2/WO3 hybrid thin films for smart window applications. Mater. Today Proc. (2022). https://doi.org/10.1016/j.matpr.2022.11.316.

    Article  Google Scholar 

  39. G.V. Ashok Reddy, S.A. Sattar, K. Naveen Kumar, C.S. KaliPrasad, C. Devaraja, R. Imran Jafri, and B.H. Doreswamy, Effect of tungsten oxide thin films deposited on cerium oxide nano rods for electrochromic applications. Opt. Mater. 134, 113220 (2022). https://doi.org/10.1016/j.optmat.2022.113220.

    Article  CAS  Google Scholar 

  40. A.R. GV, K.N. Kumar, H. Shaik, R.I. Jafri, R. Naik, and B.H. Doreswamy, Optical and electrochromic properties of CeO2/WO3 hybrid thin films prepared by hydrothermal and sputtering. Int. J. Eng. Trends Technol. 70, 1 (2022).

    Article  Google Scholar 

  41. G.V. Ashok Reddy, K.N. Kumar, S.A. Sattar, N.G. Prakash, B. Daruka Prasad, M. Dhananjaya, G.R. Kumar, H.S. Yogananda, S.M. Hunagund, and S. Ansar, Structural, optical, and electrochromic properties of rare earth material (CeO2)/transitional metal oxide (WO3) thin film composite structure for electrochromic applications. Ionics (2023). https://doi.org/10.1007/s11581-023-05078-9.

    Article  Google Scholar 

  42. G.F. Cai, J.P. Tu, D. Zhou, X.L. Wang, and C.D. Gu, Growth of vertically aligned hierarchical WO3 nano-architecture arrays on transparent conducting substrates with outstanding electrochromic performance. Sol. Energy Mater. Sol. Cells 124, 103 (2014). https://doi.org/10.1016/j.solmat.2014.01.042.

    Article  CAS  Google Scholar 

  43. V. Madhavi, P. Kondaiah, O.M. Hussain, and S. Uthanna, Structural, optical, and luminescence properties of reactive magnetron sputtered tungsten oxide thin films. Int. Scholar. Res. Not. 2012, 1 (2012). https://doi.org/10.5402/2012/801468.

    Article  CAS  Google Scholar 

  44. S.H. Mohamed, H.A. Mohamed, and H.A. Abd El Ghani, Development of structural and optical properties of WOx films upon increasing oxygen partial pressure during reactive sputtering. Phys. B 406, 831 (2011). https://doi.org/10.1016/j.physb.2010.12.005.

    Article  CAS  Google Scholar 

  45. S.H. Lee, H.M. Cheong, C.E. Tracy, A. Mascarenhas, D.K. Benson, and S.K. Deb, Raman spectroscopic studies of electrochromic a-WO3. Electrochim. Acta 44, 3111 (1999). https://doi.org/10.1016/S0013-4686(99)00027-4.

    Article  CAS  Google Scholar 

  46. J. Gabrusenoks, A. Veispals, A. Von Czarnowski, and K.H. Meiwes-Broer, Infrared and Raman spectroscopy of WO3 and CdWO4. Electrochim. Acta 46, 2229 (2001). https://doi.org/10.1016/S0013-4686(01)00364-4.

    Article  CAS  Google Scholar 

  47. R. Chandra, A.K. Chawla, and P. Ayyub, Optical and structural properties of sputter-deposited nanocrystalline Cu2O films: effect of sputtering gas. J. Nanosci. Nanotechnol. 6, 1119 (2006). https://doi.org/10.1166/jnn.2006.176.

    Article  CAS  PubMed  Google Scholar 

  48. A.K. Chawla, S. Singhal, H.O. Gupta, and R. Chandra, Effect of sputtering gas on structural and optical properties of nanocrystalline tungsten oxide films. Thin Solid Films 517, 1042 (2008). https://doi.org/10.1016/j.tsf.2008.06.068.

    Article  CAS  Google Scholar 

  49. M.B. Babu and K.V. Madhuri, Synthesis and electrochromic properties of nanocrystalline WO3 thin films. Phys. B Condens. Matter 584, 412068 (2020). https://doi.org/10.1016/j.physb.2020.412068.

    Article  CAS  Google Scholar 

  50. C.K. Wang, D.R. Sahu, S.C. Wang, C.K. Lin, and J.L. Huang, Structural evolution and chemical bonds in electrochromic WO3 films during electrochemical cycles. J. Phys. D Appl. Phys. 45, 225303 (2012). https://doi.org/10.1088/0022-3727/45/22/225303.

    Article  CAS  Google Scholar 

  51. K.J. Patel, G.G. Bhatt, S.S. Patel, R.R. Desai, J.R. Ray, C.J. Panchal, P. Suryavanshi, V.A. Kheraj, and A.S. Opanasyuk, Thickness-dependent electrochromic properties of amorphous tungsten trioxide thin films. J. Nano Electron. Phys. 9, 03040 (2017). https://doi.org/10.21272/jnep.9(3).03040.

    Article  CAS  Google Scholar 

  52. V. Madhavi, P. Kondaiah, O.M. Hussain, and S. Uthanna, Structural, optical and electrochromic properties of RF magnetron sputtered WO3 thin films. Phys. B 454, 141 (2014). https://doi.org/10.1016/j.physb.2014.07.029.

    Article  CAS  Google Scholar 

  53. C.S. Hsu, C.C. Chan, H.T. Huang, C.H. Peng, and W.C. Hsu, Electrochromic properties of nanocrystalline MoO3 thin films. Thin Solid Films 516, 4839 (2008). https://doi.org/10.1016/j.tsf.2007.09.019.

    Article  CAS  Google Scholar 

  54. B. Wen-Cheun Au, A. Tamang, D. Knipp, and K.Y. Chan, Post-annealing effect on the electrochromic properties of WO3 films. Opt. Mater. 108, 110426 (2020). https://doi.org/10.1016/j.optmat.2020.110426.

    Article  CAS  Google Scholar 

  55. X. Sun, Z. Liu, and H. Cao, Electrochromic properties of N-doped tungsten oxide thin films prepared by reactive DC-pulsed sputtering. Thin Solid Films 519, 3032 (2011). https://doi.org/10.1016/j.tsf.2010.12.017.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank the Nitte Meenakshi Institute of Technology, Bengaluru, India, for providing facilities, and the work was supported by the Researchers Supporting Project number (RSPD2023R765), King Saud University, Riyadh, Saudi Arabia.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to K. Naveen Kumar, Sheik Abdul Sattar, Nunna Guru Prakash or Tae Jo Ko.

Ethics declarations

Conflict of interest

There is no conflict of interest to declare.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, K.N., Reddy, G.V.A., Sattar, S.A. et al. Effect of Oxygen Flow Rate, Post-annealing Temperature, and Different Electrolyte Concentrations on WO3 Thin Films Deposited by DC Magnetron Sputtering For Electrochromic Applications. J. Electron. Mater. 53, 2351–2366 (2024). https://doi.org/10.1007/s11664-024-11000-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-024-11000-4

Keywords

Navigation