Skip to main content
Log in

Single-Layer Terahertz Tri-band Bandpass Filter Employing High-Temperature Superconducting Metamaterial

  • Original Research Article
  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

In this paper, a single-layer terahertz tri-band bandpass filter without a dielectric substrate is designed using high-temperature superconductor YBa2Cu3O7−δ (YBCO) metamaterial. The proposed single-layer terahertz tri-band bandpass filter achieves its three passband resonances through the weak coupling and superposition of three sub-resonators: a cross-shaped slot resonator (CSSR), a split square ring slot resonator (SSRSR), and a split circular ring slot resonator (SCRSR). In comparison to single-layer filters designed with metallic Au metamaterial, the YBCO-based single-layer filter offers superior frequency selectivity, when the superconducting metamaterial YBCO is at a temperature of 20 K, which is below the transition temperature (Tc). Within the frequency range of 2–5 THz, the corresponding resonant frequencies for the three passbands are 2.861 THz, 3.332 THz, and 3.956 THz, all achieving transmittance exceeding 97% and remaining polarization-insensitive under vertically incident terahertz waves. The proposed single-layer superconducting metamaterial terahertz tri-band bandpass filter holds immense promise for applications in terahertz sensing technology, terahertz biomedical frequency detection, and low-cost, low-insertion-loss terahertz communication filtering devices within the terahertz spectrum.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data Availability

All data generated or analyzed during this study are included in this published article.

References

  1. S.T. Xu, F. Fan, Y.H. Wang, T.Z. Yang, H.Z. Cao, and S.J. Chang, Intensity-tunable terahertz bandpass filters based on liquid crystal integrated metamaterials. Appl. Opt. 60, 9530 (2021).

    Article  ADS  PubMed  Google Scholar 

  2. L.Z. Cai, Z.H. Jiang, J.B. Wu, H. Chen, and W. Hong, Low-loss and flexible terahertz bandpass frequency selective surface based on cyclic olefin copolymer substrate via solvent-free synthesis. Opt. Express 31, 21706 (2023).

    Article  ADS  CAS  PubMed  Google Scholar 

  3. S.W. Gan, P. Shi, A.P. Yang, M. Lin, L.P. Du, and X.C. Yuan, Deep-subwavelength optical spin textures in volume plasmon polaritons with hyperbolic metamaterials. Adv. Opt. Mater. 11, 2201986 (2023).

    Article  CAS  Google Scholar 

  4. Y. Ren, T.L. Zhou, C. Jiang, and B. Tang, Thermally switching between perfect absorber and asymmetric transmission in vanadium dioxide-assisted metamaterials. Opt. Express 29, 7666 (2021).

    Article  ADS  PubMed  Google Scholar 

  5. X.G. Luo, Subwavelength artificial structures: opening a new era for engineering optics. Adv. Mater. 31, 1804680 (2019).

    Article  MathSciNet  Google Scholar 

  6. T. Ramachandran, M.R.I. Faruque, and K.S. Al-mugren, Symmetric left-handed split ring resonator metamaterial design for terahertz frequency applications. Sci. Rep. 13, 21828 (2023).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  7. R.S. Parker-Jervis, S.J. Park, and J.E. Cunningham, Tunable terahertz band-stop filter using strongly coupled split ring resonators integrated with on-chip waveguide. J. Appl. Phys. 129, 053101 (2021).

    Article  ADS  CAS  Google Scholar 

  8. A.B. Asl, A. Rostami, and I.S. Amiri, Terahertz band pass filter design using multilayer metamaterials. Opt. Quantum Electron. 52, 155 (2020).

    Article  CAS  Google Scholar 

  9. J. Huang, J.N. Li, Y. Yang, J. Li, J.H. Li, Y.T. Zhang, and J.Q. Yao, Active controllable bandwidth of THz metamaterial bandpass filter based on vanadium dioxide. Opt. Commun. 465, 125616 (2020).

    Article  CAS  Google Scholar 

  10. A.A. Althuwayb, N. Rashid, O.I. Elhamrawy, K. Kaaniche, I. Khan, Y.C. Byun, and D.O. Madsen, Design and performance evaluation of a novel metamaterial broadband THz filter for 6G applications. Front. Mater. 10, 3389 (2023).

    Article  Google Scholar 

  11. Q. Wang, Y.Z. Chen, J.X. Mao, F.Y. Yang, and N. Wang, Metasurface-assisted terahertz sensing. Sensors 23, 5902 (2023).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  12. Z.P. Jia, L. Huang, J.B. Su, and B. Tang, Tunable electromagnetically induced transparency-like in graphene metasurfaces and its application as a refractive index sensor. J. Light. Technol. 39, 1544 (2021).

    Article  ADS  CAS  Google Scholar 

  13. S. Duan, J. Wu, Z. Shen, Y. Guan, X. Jia, C. Zhang, B. Jin, L. Kang, W. Xu, H. Wang, J. Chen, and P. Wu, Tunable and high quality factor fano and toroidal dipole resonances in terahertz superconducting metamaterials. Mater. Res. Express 7, 046001 (2020).

    Article  ADS  CAS  Google Scholar 

  14. S. Anwar, Ultrathin metamaterial-based refractive index sensor for biomedical applications. Phys. Scr. 98, 085016 (2023).

    Article  ADS  Google Scholar 

  15. K. Liu, R. Zhang, Y. Liu, X.Q. Chen, K.D. Li, and E. Pickwell-Macpherson, Gold nanoparticle enhanced detection of EGFR with a terahertz metamaterial biosensor. Biomed. Opt. Express 12, 1559 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  16. K. Miyata, L. Toyoshima, K. Iijima, Y. Goto, Y. Shohmitsu, Y. Wada, and T. Nakaoka, Terahertz bandpass filter with Babinet complementary metamaterial mirrors and silicon subwavelength structure. Opt. Express 31, 23507 (2023).

    Article  ADS  CAS  PubMed  Google Scholar 

  17. M. Esakkimuthu, I. Jothinayagam, K. Arumugam, S.C. Pravin, and M. Jewariya, Flexible and polarization independent miniaturized double-band/broadband tunable metamaterial terahertz filter. Materials 15, 8174 (2022).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  18. P.J. Wu, W.C. Tsai, and C.S. Yang, Electrically tunable graphene-based multi-band terahertz metamaterial filters. Opt. Express 31, 469 (2023).

    Article  ADS  CAS  PubMed  Google Scholar 

  19. Z.Z. Li, S.M. Wang, Y.Y. Zhu, J.W. Fan, D. Guo, and Y.E. Chen, E-shaped split ring resonator used for metasurface-based structure with an ultra-high Q-factor for terahertz application. Opt. Commun. 529, 129041 (2023).

    Article  CAS  Google Scholar 

  20. N. Niharika, S. Singh, and P. Kumar, Multifunctional metasurface based bandstop and bandpass filters for terahertz radiation. Optik 253, 168551 (2022).

    Article  ADS  CAS  Google Scholar 

  21. L.M. Qi, C. Li, G.Y. Fang, and S.C. Li, Single-layer dual-band terahertz filter with weak coupling between two neighboring cross slots. Chin. Phys. B 24, 107802 (2015).

    Article  ADS  Google Scholar 

  22. D.D. Sun, L.M. Qi, and Z.Y. Liu, Terahertz broadband filter and electromagnetically induced transparency structure with complementary metasurface. Results Phys. 16, 102887 (2020).

    Article  Google Scholar 

  23. Y. Huang, Q.C. He, D.P. Zhang, and Y. Kanamori, Switchable band-pass filter for terahertz waves using VO2-based metamaterial integrated with silicon substrate. Opt. Rev. 28, 92 (2021).

    Article  CAS  Google Scholar 

  24. J.Q. Gu, R. Singh, Z. Tian, W. Cao, Q.R. Xing, M.X. He, J.W. Zhang, J.G. Han, H.T. Chen, and W.L. Zhang, Terahertz superconductor metamaterial. Appl. Phys. Lett. 97, 071102 (2010).

    Article  ADS  Google Scholar 

  25. Y.K. Srivastava and R. Singh, Impact of conductivity on Lorentzian and Fano resonant high-Q THz metamaterials: Superconductor, metal and perfect electric conductor. J. Appl. Phys. 122, 183104 (2017).

    Article  ADS  Google Scholar 

  26. H.T. Chen, H. Yang, R. Singh, J.F. O’Hara, A.K. Azad, S.A. Trugman, Q.X. Jia, and A.J. Taylor, Tuning the resonance in High-Temperature superconducting terahertz metamaterials. Phys. Rev. Lett. 105, 247402 (2010).

    Article  ADS  PubMed  Google Scholar 

  27. K.V. Sreekanth, P. Mahalakshmi, S. Han, D. Vigneswaran, M.S.M. Rajan, R. Jha, and R. Singh, A terahertz Brewster switch based on superconductor hyperbolic metamaterial. J. Appl. Phys. 128, 173106 (2020).

    Article  ADS  CAS  Google Scholar 

  28. S. Macis, M.C. Paolozzi, A. Darco, L. Tomarchio, A. Di Gaspare, and S. Lupi, Terahertz resonators based on YBa2Cu3O7 High-Tc superconductor. Appl. Sci. Basel 12, 10242 (2022).

    Article  CAS  Google Scholar 

  29. C.H. Zhang, J.B. Wu, B.B. Jin, Z.M. Ji, L. Kang, W.W. Xu, J. Chen, M. Tonouchi, and P.H. Wu, Low-loss terahertz metamaterial from superconducting niobium nitride films. Opt. Express 20, 42 (2012).

    Article  ADS  PubMed  Google Scholar 

  30. P. Jung, A.V. Ustinov, and S.M. Anlage, Progress in superconducting metamaterials. Supercond. Sci. Technol. 27, 073001 (2014).

    Article  ADS  CAS  Google Scholar 

  31. C. Li, C.H. Zhang, G.L. Hu, G.C. Zhou, S.L. Jiang, C.T. Jiang, G.H. Zhu, B.B. Jin, L. Kang, W.W. Xu, J. Chen, and P.H. Wu, Electrically tunable superconducting terahertz metamaterial with low insertion loss and high switchable ratios. Appl. Phys. Lett. 109, 022601 (2016).

    Article  ADS  Google Scholar 

  32. S.D. Brorson, R. Buhleier, I.E. Trofimov, J.O. White, C. Ludwig, F.F. Balakirev, H.U. Habermeier, and J. Kuhl, Electrodynamics of high-temperature superconductors investigated with coherent terahertz pulse spectroscopy. J. Opt. Soc. Am. B-Opt. Phys. 13, 1979 (1996).

    Article  ADS  CAS  Google Scholar 

  33. M. Ricci, N. Orloff, and S.M. Anlage, Superconducting metamaterials. Appl. Phys. Lett. 87, 034102 (2005).

    Article  ADS  Google Scholar 

  34. Y. Demirhan, H. Alaboz, M.A. Nebioglu, B. Mulla, M. Akkaya, H. Altan, C. Sabah, and L. Ozyuzer, Fourcross shaped metamaterial filters fabricated from high temperature superconducting YBCO and Au thin films for terahertz waves. Supercond. Sci. Technol. 30, 074006 (2017).

    Article  ADS  Google Scholar 

Download references

Funding

This study is supported by the National Natural Science Foundation of China (Grant No.61275070) and Natural Science Foundation of Shanghai (Grant No. 15ZR1415900).

Author information

Authors and Affiliations

Authors

Contributions

XC: Conceptualization, Methodology, Software, Writing—Original Draft, Writing—Review Editing. ZX: Conceptualization, Validation, Writing—Review & Editing, Supervision. YL: Conceptualization, Validation, Writing—Review & Editing. XW: Software, Writing—Review Editing, Data Curation. PC: Software, Formal analysis, Investigation.

Corresponding author

Correspondence to Zhongyin Xiao.

Ethics declarations

Competing interests

The authors declared that they have no conflicts of interest to this work. We declare that we do not have any commercial or associative interest that represents a conflict of interest in connection with the work submitted.

Ethical approval

We declare that this article is original, has not been published before, and is not currently considered for publication elsewhere. We confirm that the manuscript has been read and approved by all named authors and that there are no other persons who satisfied the criteria for authorship but are not listed. We further confirm that the order of authors listed in the manuscript has been approved by all of us.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cai, X., Xiao, Z., Liu, Y. et al. Single-Layer Terahertz Tri-band Bandpass Filter Employing High-Temperature Superconducting Metamaterial. J. Electron. Mater. 53, 1642–1650 (2024). https://doi.org/10.1007/s11664-023-10898-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-023-10898-6

Keywords

Navigation