Skip to main content
Log in

Topological Insulator TlBiSe2/GaN Vertical Heterojunction Diode for High Responsive Broadband UV to Near-Infrared Photodetector

  • Original Research Article
  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

Quasi-2D thin film of TI material TlBiSe2, as well as TlBiSe2/GaN configuration, have been fabricated employing the thermal evaporation technique. Raman peaks of vibrational modes were analyzed in a TlBiSe2/GaN heterojunction showing a substrate-induced signal for the surface phonon mode (SPM). The study of ultrafast kinetics of charge carriers and transient absorption spectroscopy (TAS) gave excited-state spectrum characteristics and exciton dynamics in TlBiSe2/GaN heterojunction. The electrical characterization showed that the heterojunction device exhibited a good diode nature with an excellent rectification ratio of 160. The photodetection capabilities were examined by optical power varying from 2.37 µW to 3.78 µW in the ultraviolet to near-infrared region (300–900 nm). It demonstrated maximum photoresponse at 500 nm in forward and reverse bias. The current conduction mechanism and enhancement in current under light impact were explained using energy band modeling. The present work is important in regarding the development of photodetectors of succeeding generations with a topological insulator material.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Y. Ando, Topological insulator materials. J. Phys. Soc. Japan. 82, 102001 (2013). https://doi.org/10.7566/JPSJ.82.102001.

    Article  CAS  ADS  Google Scholar 

  2. M.Z. Hasan and C.L. Kane, Colloquium : Topological insulators. Rev. Mod. Phys. 82, 3045–3067 (2010). https://doi.org/10.1103/RevModPhys.82.3045.

    Article  CAS  ADS  Google Scholar 

  3. A.T.N.R.H.A.O.F.S.S.S.A.A.G. and M.H.A.H. F.S.Bahabri1, Investigation of the Electrical Transport Properties of TIBiTe2 Single Crystals, (n.d.).

  4. M.Z. Hasan and C.L. Kane, Colloquium: topological insulators. Rev. Mod. Phys. 82, 3045 (2010).

    Article  CAS  ADS  Google Scholar 

  5. Y.L. Chen, Z.K. Liu, J.G. Analytis, J.-H. Chu, H.J. Zhang, B.H. Yan, S.-K. Mo, R.G. Moore, D.H. Lu, I.R. Fisher, S.C. Zhang, Z. Hussain, and Z.-X. Shen, Single dirac cone topological surface state and unusual thermoelectric property of compounds from a new topological insulator family. Phys. Rev. Lett. 105, 266401 (2010). https://doi.org/10.1103/PhysRevLett.105.266401.

    Article  CAS  PubMed  ADS  Google Scholar 

  6. X.-L. Qi, T.L. Hughes, S. Raghu, and S.-C. Zhang, Time-reversal-invariant topological superconductors and superfluids in two and three dimensions. Phys. Rev. Lett. 102, 187001 (2009). https://doi.org/10.1103/PhysRevLett.102.187001.

    Article  CAS  PubMed  ADS  Google Scholar 

  7. Y.S. Hor, J.G. Checkelsky, D. Qu, N.P. Ong, and R.J. Cava, Superconductivity and non-metallicity induced by doping the topological insulators Bi2Se3 and Bi2Te3. J. Phys. Chem. Solids 72, 572–576 (2011). https://doi.org/10.1016/j.jpcs.2010.10.027.

    Article  CAS  ADS  Google Scholar 

  8. X.-L. Qi, T.L. Hughes, and S.-C. Zhang, Topological invariants for the Fermi surface of a time-reversal-invariant superconductor. Phys. Rev. B 81, 134508 (2010). https://doi.org/10.1103/PhysRevB.81.134508.

    Article  CAS  ADS  Google Scholar 

  9. F. Wilczek, Majorana returns. Nat. Phys. 5, 614–618 (2009). https://doi.org/10.1038/nphys1380.

    Article  CAS  Google Scholar 

  10. A.E. Feiguin, E. Rezayi, K. Yang, C. Nayak, and S. Das Sarma, Spin polarization of the v=5/2 quantum Hall state. Phys. Rev. B 79, 115322 (2009). https://doi.org/10.1103/PhysRevB.79.115322.

    Article  CAS  ADS  Google Scholar 

  11. X.L. Qi and S.-C. Zhang, Topological insulators and superconductors. Rev. Mod. Phys. 83, 1057 (2011).

    Article  CAS  ADS  Google Scholar 

  12. B. Yan and S.C. Zhang, Topological materials. Rep. Prog. Phys. 75, 096501 (2012). https://doi.org/10.1088/0034-4885/75/9/096501.

    Article  CAS  PubMed  ADS  Google Scholar 

  13. H. Zhang and S.C. Zhang, Topological insulators from the perspective of first-principles calculations. Phys. Status Solidi Rapid Res. Lett. 7, 72–81 (2013). https://doi.org/10.1002/pssr.201206414.

    Article  CAS  ADS  Google Scholar 

  14. C.L. Kane and E.J. Mele, Quantum spin hall effect in graphene. Phys. Rev. Lett. 95, 226801 (2005). https://doi.org/10.1103/PhysRevLett.95.226801.

    Article  CAS  PubMed  ADS  Google Scholar 

  15. B.A. Bernevig, T.L. Hughes, and S.C. Zhang, Quantum spin hall effect and topological phase transition in HgTe quantum wells. Science 314, 1757–1761 (2006). https://doi.org/10.1126/science.1133734.

    Article  CAS  PubMed  ADS  Google Scholar 

  16. D. Hsieh, Y. Xia, D. Qian, L. Wray, J.H. Dil, F. Meier, J. Osterwalder, L. Patthey, J.G. Checkelsky, N.P. Ong, A.V. Fedorov, H. Lin, A. Bansil, D. Grauer, Y.S. Hor, R.J. Cava, and M.Z. Hasan, A tunable topological insulator in the spin helical Dirac transport regime. Nature 460, 1101–1105 (2009). https://doi.org/10.1038/nature08234.

    Article  CAS  PubMed  ADS  Google Scholar 

  17. T. Sato, K. Segawa, H. Guo, K. Sugawara, S. Souma, T. Takahashi, and Y. Ando, Direct evidence for the dirac-cone topological surface states in the ternary chalcogenide TlBiSe2. Phys. Rev. Lett. 105, 136802 (2010). https://doi.org/10.1103/PhysRevLett.105.136802.

    Article  CAS  PubMed  ADS  Google Scholar 

  18. K. Kuroda, M. Ye, A. Kimura, S.V. Eremeev, E.E. Krasovskii, E.V. Chulkov, Y. Ueda, K. Miyamoto, T. Okuda, K. Shimada, H. Namatame, and M. Taniguchi, Experimental realization of a three-dimensional topological insulator phase in ternary chalcogenide. Phys. Rev. Lett. 105, 146801 (2010). https://doi.org/10.1103/PhysRevLett.105.146801.

    Article  CAS  PubMed  ADS  Google Scholar 

  19. Q. Zhang, Y. Cheng, and U. Schwingenschlögl, Emergence of topological and topological crystalline phases in TlBiS2 and TlSbS2. Sci. Rep. 5, 8379 (2015). https://doi.org/10.1038/srep08379.

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  20. H. Zhang, C.-X. Liu, X.-L. Qi, X. Dai, Z. Fang, and S.-C. Zhang, Topological insulators in Bi 2 Se 3, Bi 2 Te 3 and Sb 2 Te 3 with a single Dirac cone on the surface. Nat. Phys. 5, 438–442 (2009).

    Article  CAS  Google Scholar 

  21. Y. Xia, D. Qian, D. Hsieh, L. Wray, A. Pal, H. Lin, A. Bansil, D. Grauer, Y.S. Hor, R.J. Cava, and M.Z. Hasan, Observation of a large-gap topological-insulator class with a single Dirac cone on the surface. Nat. Phys. 5, 398–402 (2009). https://doi.org/10.1038/nphys1274.

    Article  CAS  Google Scholar 

  22. D. Hsieh, Y. Xia, D. Qian, L. Wray, F. Meier, J.H. Dil, J. Osterwalder, L. Patthey, A.V. Fedorov, and H. Lin, Observation of time-reversal-protected single-Dirac-cone topological-insulator states in Bi 2 Te 3 and Sb 2 Te 3. Phys. Rev. Lett. 103, 146401 (2009).

    Article  CAS  PubMed  ADS  Google Scholar 

  23. W. Liu, X. Peng, C. Tang, L. Sun, K. Zhang, and J. Zhong, Anisotropic interactions and strain-induced topological phase transition in Sb2Te3 and Bi2Se3. Phys. Rev. B 84, 245105 (2011). https://doi.org/10.1103/PhysRevB.84.245105.

    Article  CAS  ADS  Google Scholar 

  24. A. Bera, K. Pal, D.V.S. Muthu, S. Sen, P. Guptasarma, U.V. Waghmare, and A.K. Sood, Sharp Raman anomalies and broken adiabaticity at a pressure induced transition from band to topological insulator in Sb2Se3. Phys. Rev. Lett. 110, 107401 (2013). https://doi.org/10.1103/PhysRevLett.110.107401.

    Article  CAS  PubMed  ADS  Google Scholar 

  25. G.K. Maurya, V. Gautam, F. Ahmad, R. Singh, K. Kandpal, R. Kumar, M. Kumar, P. Kumar, and A. Tiwari, Visible to near-infrared broadband photodetector employing thin film topological insulator heterojunction (P-Tlbise2/N-Si) Diode. Appl. Surf. Sci. 612, 155813 (2023).

    Article  CAS  Google Scholar 

  26. R.B. Laughlin, Quantized hall conductivity in two dimensions. Phys. Rev. B 23, 5632–5633 (1981). https://doi.org/10.1103/PhysRevB.23.5632.

    Article  ADS  Google Scholar 

  27. T. Ando and Y. Uemura, Theory of quantum transport in a two-dimensional electron system under magnetic fields. i. characteristics of level broadening and transport under strong fields. J. Phys. Soc. Jpn. 36, 959–967 (1974). https://doi.org/10.1143/JPSJ.36.959.

    Article  ADS  Google Scholar 

  28. J.E. Hirsch, Spin hall effect. Phys. Rev. Lett. 83, 1834–1837 (1999). https://doi.org/10.1103/PhysRevLett.83.1834.

    Article  CAS  ADS  Google Scholar 

  29. S. Zhang, Spin hall effect in the presence of spin diffusion. Phys. Rev. Lett. 85, 393–396 (2000). https://doi.org/10.1103/PhysRevLett.85.393.

    Article  CAS  PubMed  ADS  Google Scholar 

  30. F. Zhou, Y. Zhao, W. Zhou, and D. Tang, Temperature-dependent raman scattering of large size hexagonal Bi2Se3 single-crystal nanoplates. Appl. Sci. 8, 1794 (2018). https://doi.org/10.3390/app8101794.

    Article  CAS  Google Scholar 

  31. N. Rivas, S. Zhong, T. Dekker, M. Cheng, P. Gicala, F. Chen, X. Luo, Y. Sun, A.A. Petruk, K. Pichugin, A.W. Tsen, and G. Sciaini, Generation and detection of coherent longitudinal acoustic waves in ultrathin 1 <i>T’</i> -MoTe 2. Appl. Phys. Lett. 115, 223103 (2019). https://doi.org/10.1063/1.5125862.

    Article  CAS  ADS  Google Scholar 

  32. X. Zhang, X.-F. Qiao, W. Shi, J.-B. Wu, D.-S. Jiang, and P.-H. Tan, Phonon and Raman scattering of two-dimensional transition metal dichalcogenides from monolayer, multilayer to bulk material. Chem. Soc. Rev. 44, 2757–2785 (2015). https://doi.org/10.1039/C4CS00282B.

    Article  CAS  PubMed  Google Scholar 

  33. K. Segawa, Synthesis and characterization of 3D topological insulators: a case TlBi(S 1–x Se x ) 2. Sci. Technol. Adv. Mater. 16, 014405 (2015). https://doi.org/10.1088/1468-6996/16/1/014405.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. R. German, E.V. Komleva, P. Stein, V.G. Mazurenko, Z. Wang, S.V. Streltsov, Y. Ando, and P.H.M. van Loosdrecht, Phonon mode calculations and Raman spectroscopy of the bulk-insulating topological insulator BiSbTeSe2. Phys. Rev. Mater. 3, 054204 (2019). https://doi.org/10.1103/PhysRevMaterials.3.054204.

    Article  CAS  Google Scholar 

  35. J. Yuan, M. Zhao, W. Yu, Y. Lu, C. Chen, M. Xu, S. Li, K. Loh, and B. Qiaoliang, Raman spectroscopy of two-dimensional Bi2TexSe3–x platelets produced by solvothermal method. Mater. Basel. 8, 5007–5017 (2015). https://doi.org/10.3390/ma8085007.

    Article  CAS  ADS  Google Scholar 

  36. Shu-Lin Zhang, Raman spectroscopy and its application in nanostructure, (n.d.).

  37. J. Zuo, C. Xu, X. Liu, C. Wang, C. Wang, Y. Hu, and Y. Qian, Study of the Raman spectrum of nanometer SnO2. J. Appl. Phys. 75, 1835–1836 (1994). https://doi.org/10.1063/1.356348.

    Article  CAS  ADS  Google Scholar 

  38. F. Ahmad, R. Singh, R. Kumar, M. Jewariya, C. Shekhar, N. Kumar, and P. Kumar, Transient reflection spectra in topological nanocrystals of Bi2Se3, Bi2Te3, Bi2Te2Se. Adv. Mater. Lett. 8, 423–427 (2017). https://doi.org/10.5185/amlett.2017.6898.

    Article  CAS  Google Scholar 

  39. Y.D. Glinka, J. Li, T. He, and X.W. Sun, Clarifying ultrafast carrier dynamics in ultrathin films of the topological insulator Bi2 Se3 using transient absorption spectroscopy. ACS Photonics 8, 1191–1205 (2021). https://doi.org/10.1021/acsphotonics.1c00115.

    Article  CAS  Google Scholar 

  40. X. Yang, L. Luo, C. Vaswani, X. Zhao, Y. Yao, D. Cheng, Z. Liu, R.H.J. Kim, X. Liu, M. Dobrowolska-Furdyna, J.K. Furdyna, I.E. Perakis, C. Wang, K. Ho, and J. Wang, Light control of surface–bulk coupling by terahertz vibrational coherence in a topological insulator. Npj Quantum Mater. 5, 13 (2020). https://doi.org/10.1038/s41535-020-0215-7.

    Article  CAS  ADS  Google Scholar 

  41. S. Rast, M.L. Schneider, M. Onellion, X.H. Zeng, W. Si, X.X. Xi, M. Abrecht, D. Ariosa, D. Pavuna, Y.H. Ren, G. Lüpke, and I. Perakis, Evidence for two coupled subsystems in the superconducting state of La2-xSrxCuO4. Phys. Rev. B 64, 214505 (2001). https://doi.org/10.1103/PhysRevB.64.214505.

    Article  CAS  ADS  Google Scholar 

  42. Y.D. Glinka, N.H. Tolk, X. Liu, Y. Sasaki, and J.K. Furdyna, Electro-optic nature of ultrafast pump-probe reflectivity response from multilayer semiconductor heterostructures. J. Appl. Phys. 103, 043708 (2008). https://doi.org/10.1063/1.2840139.

    Article  CAS  ADS  Google Scholar 

  43. G.K. Maurya, F. Ahmad, S. Kumar, V. Gautam, K. Kandpal, A. Tiwari, and P. Kumar, Dual-quadrant photodetection in topological insulator and silicon-based heterojunction (n-Bi2Te2Se/p-Si). Appl. Surf. Sci. 565, 150497 (2021). https://doi.org/10.1016/j.apsusc.2021.150497.

    Article  CAS  Google Scholar 

  44. V. Gautam, S. Gautam, G.K. Maurya, K. Kandpal, B. Singh, R. Ganesan, S.S. Kushvaha, and P. Kumar, Investigation of RF sputtered, n-Bi2Se3 heterojunction on p-Si for enhanced NIR optoelectronic applications. Sol. Energy Mater. Sol. Cells 248, 112028 (2022).

    Article  CAS  Google Scholar 

  45. S.K. Cheung and N.W. Cheung, Extraction of Schottky diode parameters from forward current-voltage characteristics. Appl. Phys. Lett. 49, 85–87 (1986). https://doi.org/10.1063/1.97359.

    Article  CAS  ADS  Google Scholar 

  46. P. Hazra and S. Jit, A p-silicon nanowire/n-ZnO thin film heterojunction diode prepared by thermal evaporation. J. Semicond. 35, 014001 (2014). https://doi.org/10.1088/1674-4926/35/1/014001.

    Article  CAS  ADS  Google Scholar 

  47. H. Elangovan, A.V. Kesavan, K. Chattopadhyay, and P.C. Ramamurthy, 2D layering of silicon nanocrystals at TiO2/CuI heterojunction for enhanced charge transport. J. Appl. Phys. 125, 245302 (2019). https://doi.org/10.1063/1.5093958.

    Article  CAS  ADS  Google Scholar 

  48. D. Zhu, J. Xu, A.N. Noemaun, J.K. Kim, E.F. Schubert, M.H. Crawford, and D.D. Koleske, The origin of the high diode-ideality factors in GaInN/GaN multiple quantum well light-emitting diodes. Appl. Phys. Lett. 94, 081113 (2009). https://doi.org/10.1063/1.3089687.

    Article  CAS  ADS  Google Scholar 

  49. C.X. Wang, G.W. Yang, H.W. Liu, Y.H. Han, J.F. Luo, C.X. Gao, and G.T. Zou, Experimental analysis and theoretical model for anomalously high ideality factors in ZnO/diamond p-n junction diode. Appl. Phys. Lett. 84, 2427–2429 (2004). https://doi.org/10.1063/1.1689397.

    Article  CAS  ADS  Google Scholar 

  50. H.C. Casey, J. Muth, S. Krishnankutty, and J.M. Zavada, Dominance of tunneling current and band filling in InGaN/AlGaN double heterostructure blue light-emitting diodes. Appl. Phys. Lett. 68, 2867–2869 (1996). https://doi.org/10.1063/1.116351.

    Article  CAS  ADS  Google Scholar 

  51. W. Richter and C.R. Becker, A Raman and far-infrared investigation of phonons in the rhombohedral V2–VI3 compounds Bi2Te3, Bi2Se3, Sb2Te3 and Bi2(Te1−xSex)3 (0<x<1), (Bi1−ySby)2Te3 (0<y<1). Phys. Status Solidi 84, 619–628 (1977). https://doi.org/10.1002/pssb.2220840226.

    Article  CAS  Google Scholar 

  52. V. Russo, A. Bailini, M. Zamboni, M. Passoni, C. Conti, C.S. Casari, A. Li Bassi, and C.E. Bottani, Raman spectroscopy of Bi-Te thin films. J. Raman Spectrosc. Int. J. Original Work Aspects Raman Spectrosc. Including Higher Order Process. Brillouin Rayleigh Scatt. 39(2), 205–210 (2008).

    CAS  Google Scholar 

  53. Q.J. Song, Q.H. Tan, X. Zhang, J.B. Wu, B.W. Sheng, Y. Wan, X.Q. Wang, L. Dai, and P.H. Tan, Physical origin of Davydov splitting and resonant Raman spectroscopy of Davydov components in multilayer MoTe2. Phys. Rev. B 93, 115409 (2016). https://doi.org/10.1103/PhysRevB.93.115409.

    Article  CAS  ADS  Google Scholar 

  54. B. Das, N.S. Das, S. Sarkar, B.K. Chatterjee, and K.K. Chattopadhyay, Topological insulator Bi2Se3/Si-nanowire-based p–n junction diode for high-performance near-infrared photodetector. ACS Appl. Mater. Interfaces 9, 22788–22798 (2017).

    Article  CAS  PubMed  Google Scholar 

  55. M.A. Bissett, S.D. Worrall, I.A. Kinloch, and R.A.W. Dryfe, Comparison of two-dimensional transition metal dichalcogenides for electrochemical supercapacitors. Electrochim. Acta 201, 30–37 (2016). https://doi.org/10.1016/j.electacta.2016.03.190.

    Article  CAS  Google Scholar 

  56. H.-L. Liu, C.-C. Shen, S.-H. Su, C.-L. Hsu, M.-Y. Li, and L.-J. Li, Optical properties of monolayer transition metal dichalcogenides probed by spectroscopic ellipsometry. Appl. Phys. Lett. 105, 201905 (2014). https://doi.org/10.1063/1.4901836.

    Article  CAS  ADS  Google Scholar 

  57. C.-H. Liu, Y.-C. Chang, T.B. Norris, and Z. Zhong, Graphene photodetectors with ultra-broadband and high responsivity at room temperature. Nat. Nanotechnol. 9, 273–278 (2014). https://doi.org/10.1038/nnano.2014.31.

    Article  CAS  PubMed  ADS  Google Scholar 

  58. F.H.L. Koppens, T. Mueller, P. Avouris, A.C. Ferrari, M.S. Vitiello, and M. Polini, Photodetectors based on graphene, other two-dimensional materials and hybrid systems. Nat. Nanotechnol. 9, 780–793 (2014). https://doi.org/10.1038/nnano.2014.215.

    Article  CAS  PubMed  ADS  Google Scholar 

  59. M. Soylu, H. Aydin, A.A. Al-Ghamdi, W.A. Farooq, and F. Yakuphanoglu, Study of optical and electrical assessments of the quaternary MgZnSnO system containing different Mg content. J. Mater. Sci. Mater. Electron. 25, 4235–4245 (2014).

    Article  CAS  Google Scholar 

  60. E.G. Brazel, M.A. Chin, and V. Narayanamurti, Direct observation of localized high current densities in GaN films. Appl. Phys. Lett. 74, 2367–2369 (1999). https://doi.org/10.1063/1.123853.

    Article  CAS  ADS  Google Scholar 

  61. Y. Niu, R. Frisenda, E. Flores, J.R. Ares, W. Jiao, D. Perez de Lara, C. Sánchez, R. Wang, I.J. Ferrer, and A. Castellanos-Gomez, Polarization-sensitive and broadband photodetection based on a mixed-dimensionality TiS3/Si p-n Junction. Adv. Opt. Mater. 6, 1800351 (2018). https://doi.org/10.1002/adom.201800351.

    Article  Google Scholar 

  62. N. Hatefi-Kargan and S. Kiavar, Photocurrent nonlinearity in GaAs/AlGaAs quantum cascade photodetectors. Opt. Quantum Electron. 48, 41 (2016). https://doi.org/10.1007/s11082-015-0321-0.

    Article  CAS  Google Scholar 

  63. G.K. Maurya, F. Ahmad, K. Kandpal, R. Kumar, M. Kumar, P. Kumar, and A. Tiwari, UV to NIR tunable photodetector using Bi2Te2Se/n-GaN heterojunction. Surf. Interfaces. 32, 102152 (2022). https://doi.org/10.1016/j.surfin.2022.102152.

    Article  CAS  Google Scholar 

  64. J. Chae, S.-H. Kang, S.H. Park, H. Park, K. Jeong, T.H. Kim, S.-B. Hong, K.S. Kim, Y.-K. Kwon, J.W. Kim, and M.-H. Cho, Closing the Surface Bandgap in Thin Bi 2 Se 3 /Graphene Heterostructures. ACS Nano 13, 3931–3939 (2019). https://doi.org/10.1021/acsnano.8b07012.

    Article  CAS  PubMed  Google Scholar 

  65. M.C. Wang, S. Qiao, Z. Jiang, S.N. Luo, and J. Qi, Unraveling photoinduced spin dynamics in the topological insulator Bi2Se3. Phys. Rev. Lett. 116, 036601 (2016). https://doi.org/10.1103/PhysRevLett.116.036601.

    Article  CAS  PubMed  ADS  Google Scholar 

  66. Y.Q. Huang, Y.X. Song, S.M. Wang, I.A. Buyanova, and W.M. Chen, Spin injection and helicity control of surface spin photocurrent in a three dimensional topological insulator. Nat. Commun. 8, 15401 (2017). https://doi.org/10.1038/ncomms15401.

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  67. F. Ahmad, R. Kumar, S.S. Kushvaha, M. Kumar, and P. Kumar, Charge transfer induced symmetry breaking in GaN/Bi2Se3 topological heterostructure device, Npj 2D Mater. Appl. 6, 12 (2022). https://doi.org/10.1038/s41699-022-00288-7.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The Dr. Pramod Kumar would like to thank Science and Engineering Research Board, Govt. of India (CRG/2022/000070) and CSTUP (CST/D-1307) for providing the financial support to carry out this work. Chemistry & IRCB Laboratory, Department of Applied Sciences, Indian Institute of Information Technology Allahabad for synthesis. VLSI Lab, Department of Electronics, and communications, IIIT Allahabad for electrical characterization. This work was also funded by Science and Engineering Research Board under Early Career Research Award Scheme (ECR/2017/001852), Department of Science and Technology.

Author information

Authors and Affiliations

Authors

Contributions

GKM: Conceptualization, Methodology, Data curation, original draft Preparation VG, RS, Faizan Ahamad and Sandeep Kumar Verma: Methodology, Investigation, Formal Anlysis, Data Curation RK and MK: Data Curation, Ultrafast dynamics and Writing—Reviewing and Editing AT: Writing—Reviewing and Editing PK: Conceptualization, Methodology, Data curation, original draft preparation, Writing- Reviewing and Editing, Supervision, Visualization, Investigation

Corresponding authors

Correspondence to Akhilesh Tiwari or Pramod Kumar.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 512 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Maurya, G.K., Gautam, V., Ahmad, F. et al. Topological Insulator TlBiSe2/GaN Vertical Heterojunction Diode for High Responsive Broadband UV to Near-Infrared Photodetector. J. Electron. Mater. 53, 1561–1576 (2024). https://doi.org/10.1007/s11664-023-10889-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-023-10889-7

Keywords

Navigation