Skip to main content
Log in

Effects of Biaxial Strain on Phonon Thermal Transport Properties of Monolayer T′-WS2: A First-Principles Study

  • Original Research Article
  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

Two-dimensional (2D) tungsten disulfide (WS2) is attracting increasing attention because of its excellent physical properties. However, the phonon scattering mechanisms of 2D T′-phase WS2 (T′-WS2) are still poorly understood. In this paper, we systematically evaluate the phonon thermal transport properties of monolayer T′-WS2 under different biaxial tensile and compressive strain using first-principles calculations. The lattice thermal conductivity (kl) of monolayer T′-WS2 decreases monotonically with the increase in biaxial strain. The largest reductions are 97.84% (7% tensile strain) and 65.41% (−3% compressive strain). The kl of monolayer T′-WS2 is dominated by acoustic phonon modes and a portion of optical phonon modes (0–8 THz). Moreover, from the analysis of phonon behaviors, the reduction in the kl of monolayer T′-WS2 under biaxial tensile strain is attributed to the decrease in phonon heat capacity, phonon group velocity, and phonon lifetime. However, for the biaxial compressive strain, the reduction in the kl can be attributed to the interaction among the increased phonon heat capacity, relatively complex changes in the phonon group velocity, and the reduced phonon lifetime. Therefore, according to the variations in phonon phase space and Grüneisen parameters, it is evident that the biaxial tensile strain does not have a significant effect on the phase space of monolayer T′-WS2, whereas it has a significant effect on the Grüneisen parameter. This investigation offers valuable insight into the thermal conduction behavior of 2D monolayer T′-WS2.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Y. Yin, B. Tudu and A. Tiwari, Recent advances in oxide thermoelectric materials and modules. Vacuum 146, 356–374 (2017).

    Article  CAS  Google Scholar 

  2. S. Kumar and U. Schwingenschloögl, Thermoelectric response of bulk and monolayer MoSe2 and WSe2. Chem. Mater. 27(4), 1278–1284 (2015).

    Article  CAS  Google Scholar 

  3. W. Huang, X. Luo, C.K. Gan, S.Y. Quek and G. Liang, Theoretical study of thermoelectric properties of few-layer MoS2 and WSe2. Phys. Chem. Chem. Phys. 16(22), 10866–10874 (2014).

    Article  CAS  Google Scholar 

  4. K. Ghosh and U. Singisetti, Thermoelectric transport coefficients in mono-layer MoS2 and WSe2: role of substrate, interface phonons, plasmonanddynamic screening. J. Appl. Phys. 118(13), 135711 (2015).

    Article  Google Scholar 

  5. A. Amiri and R. Shahbazian-Yassar, Recent progress of high-entropy materials for energy storage and conversion. J. Mater. Chem. 9, 782–823 (2021).

    Article  CAS  Google Scholar 

  6. Q.H. Wang, K. Kalantar-Zadeh, A. Kis, J.N. Coleman and M.S. Strano, Electronics and optoelectronics of two-dimensional transition metal dichalcogenides. Nat. Nanotechnol. 7, 699 (2012).

    Article  CAS  Google Scholar 

  7. N.A. Akil and S.D. Guo, Lattice thermal transport of BAs, CdSe, CdTeandGaAs: a first principles study. J. Electron. Mater. 52(5), 3401–3412 (2023).

    Article  CAS  Google Scholar 

  8. J. He and T.M. Tritt, Advances in thermoelectric materials research: looking back and moving forward. Science 357 (6358), eaak9997 (2017)

  9. A.N. Gandi and U. Schwingenschlögl, WS2 as an excellent high-temperature thermoelectric material. Chem. Mater. 26(22), 6628–6637 (2014).

    Article  CAS  Google Scholar 

  10. G.J. Snyder and E.S. Toberer, Complex thermoelectric materials. Nat. Mater. 7(2), 105–114 (2008).

    Article  CAS  Google Scholar 

  11. K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, Y. Zhang, S.V. Dubonos, I.V. Grigorieva and A. firsov, Electric field effect in atomically thin carbon films. Science 306 (5696), 666–669 (2004)

  12. D. Han, X. Wang, W. Ding, Y. Chen, J. Zhang, G. Xin and L. Cheng, Phonon thermal conduction in a graphene–C3N heterobilayer using molecular dynamics simulations. Nanotechnology 30, 075403 (2019).

    Article  CAS  Google Scholar 

  13. Q. Zhong, Z. Dai, J. Liu, Y. Zhao and S. Meng, Phonon thermal transport in janus single layer M2XY (M = Ga; X, Y = S, Se, Te): a study based on first-principles. Phys. E Low-dimens. Syst. Nanostruct. 115, 113683 (2020).

    Article  CAS  Google Scholar 

  14. Y. Wang, Z. Gao and J. Zhou, Ultralow lattice thermal conductivity and electronic properties of monolayer 1T phase semimetal SiTe2 and SnTe2. Phys. E Low-dimens. Syst. Nanostruct. 108, 53–59 (2019).

    Article  CAS  Google Scholar 

  15. D. Muoi, N.N. Hieu, H.T.T. Phung, H.V. Phuc, B. Amin, B.D. Hoi, N.V. Hieu, L.C. Nhan, C.V. Nguyen and P.T.T. Le, Electronic properties of WS2 and WSe2 monolayers with biaxial strain: a first-principles study. Chem. Phys. 519, 69–73 (2019).

    Article  CAS  Google Scholar 

  16. D. Muoi, N.N. Hieu, V.T. Pham, H.V. Phuc, C.V. Nguyen, H.D. Bui and P.T.T. Le, Low- energy bands and optical properties of monolayer WS2. Optik 209, 164581 (2020).

    Article  CAS  Google Scholar 

  17. N.D. Hien, C.V. Nguyen, N.N. Hieu, S.S. Kubakaddi, C.A. Duque, M.E. Mora-Ramos, L. Dinh, T.N. Bich and H.V. Phuc, Magneto-optical transport properties of monolayer transition metal dichalcogenides. Phys. Rev. B 101, 045424 (2020).

    Article  Google Scholar 

  18. K. Liang, M. Yin, D. Ma and Y. Fan, Facile preparation and photocatalytic hydrogen production of WS2 and its composites. Int. J. Hydrog. Energy 47(91), 38622–38634 (2022).

    Article  CAS  Google Scholar 

  19. M.S. Sokolikova, P.C. Sherrell, P. Palczynski, V.L. Bemmer and C. Mattevi, Direct solution-phase synthesis of 1T’ WSe2 nanosheets. Nat. Commun. 10(1), 712 (2019).

    Article  CAS  Google Scholar 

  20. L. Qin, L. Xiu, X. Zhang, Z. Yu, C. Hai, K. Adnan, X. Ting, X. Jun, C. Wang, W. Xiao, Y. Jin, W. Cheng, X. Yu, J. Chuan, M.A. Pulickel and S. Li, Stable metallic 1T-WS2 nanoribbons intercalated with ammonia ions: the correlation between structure and electrical/optical properties. Adv. Mater. 27(33), 4837–4844 (2015).

    Article  Google Scholar 

  21. Z. Zhang, Y. Xie, Y. Ouyang and Y. Chen, A systematic investigation of thermal conductivities of transition metal dichalcogenides. Int. J. Heat Mass Tran. 108, 417–422 (2017).

    Article  CAS  Google Scholar 

  22. B. Ouyang, S. Chen, Y. Jing, T. Wei, S. Xiong and D. Donadio, Enhanced thermoelectric performance of two dimensional MS2 (M = Mo, W) through phase engineering. J. Materiomics 4(4), 329–337 (2018).

    Article  Google Scholar 

  23. B. Peng, Z. Ning, H. Zhang, H. Shao, Y. Xu, G. Ni and H. Zhu, Beyond perturbation: role of vacancy-induced localized phonon states in thermal transport of monolayer MoS2. J. Phys. Chem. C 120, 29324–29331 (2016).

    Article  CAS  Google Scholar 

  24. P. Jiang, X. Qian, X. Gu and R. Yang, Probing anisotropic thermal conductivity of transition metal dichalcogenides MX2 (M = Mo, W and X = S, Se) using time-domain thermoreflectance. Adv. Mater. 29, 1701068 (2017).

    Article  Google Scholar 

  25. X. Li, K. Maute, M.L. Dunn and R. Yang, Strain effects on the thermal conductivity of nanostructures. Phys. Rev. B 81(24), 245318 (2010).

    Article  Google Scholar 

  26. H. Zhu, No-monotonic strain effect on the thermal conductivity of blue phosphorene: a first-principles study. Phys. E Low-dimens. Syst. Nanostruct. 124, 114341 (2020).

    Article  CAS  Google Scholar 

  27. M. Hu, X. Zhang and D. Poulikakos, Thermal conductivity reduction in core-shell nanowires. Phys. Rev. B 84 (8), 085442(2011)

  28. G. Qin, Z. Qin, H. Wang and M. Hu, Lone-pair electrons induced anomalous enhancement of thermal transport in strained planar two-dimensional materials. Nano Energy 50, 425–430 (2018).

    Article  CAS  Google Scholar 

  29. H. Xie, T. Ouyang, E´. Germaneau, G. Qin, M. Hu and H. Bao, Large tunability of lattice thermal conductivity of monolayer silicene via mechanical strain. Phys. Rev. B: Condens. Matter Mater. Phys. 93 (7), 075404 (2016)

  30. D. Han, H. Sun, W. Ding, Y. Chen, X. Wang and L. Cheng, Effect of biaxial strain on thermal transport in WS2 monolayer from first principles calculations. Phys. E Low-dimens. Syst. Nanostruct. 124, 114312 (2020).

    Article  CAS  Google Scholar 

  31. L. Zhu, T. Zhang, Z. Sun, J. Li, G. Chen and S.A. Yang, Thermal conductivity of biaxial-strained MoS2: sensitive strain dependence and size-dependent reduction rate. Nanotechnology 26(46), 465707 (2015).

    Article  Google Scholar 

  32. A. Shafique and Y.H. Shin, Strain engineering of phonon thermal transport properties in monolayer 2H-MoTe2. Phys. Chem. Chem. Phys. 19(47), 32072–32078 (2017).

    Article  CAS  Google Scholar 

  33. K. Yuan, X. Zhang, L. Li and D. Tang, Effects of tensile strain and finite size on thermal conductivity in monolayer WSe2. Phys. Chem. Chem. Phys. 21(1), 468–477 (2018).

    Article  Google Scholar 

  34. S.D. Guo, Biaxial strain tuned thermoelectric properties in monolayer PtSe2. J. Mater. Chem. C 4(39), 9366–9374 (2016).

    Article  CAS  Google Scholar 

  35. G. Kresse and J. Furthmüller, Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54(16), 11169–11186 (1996).

    Article  CAS  Google Scholar 

  36. J.P. Perdew, K. Burke and M. Ernzerhof, Generalized gradient approximation made simple. Phys. Rev. Lett. 77(18), 3865–3868 (1996).

    Article  CAS  Google Scholar 

  37. W. Li, J. Carrete, N.A. Katcho and N. Mingo, ShengBTE, A solver of the Boltzmann transport equation for phonons. Comput. Phys. Commun. 185, 1747–1758 (2014).

    Article  CAS  Google Scholar 

  38. A. Togo, F. Oba and I. Tanaka, First-principles calculations of the ferroelastic transition between rutile-type and CaCl2-type SiO2 at high pressures. Phys. Rev. B 78(13), 134106 (2008).

    Article  Google Scholar 

  39. S.S. Batsanov and Van der Waals radii of elements. Inorg. Mater. 37 (9), 871-885 (2001)

  40. H. Huang, G. Hu, C. Hu and F. Xiao, Enhanced hydrogen evolution reactivity of T’-phase tungsten dichalcogenides (WS2, WSe2 and WTe2) materials: a DFT study. Int. J. Mol. Sci. 23(19), 11727 (2022).

    Article  CAS  Google Scholar 

  41. B. Peng, H. Zhang, H. Shao, Y. Xu, X. Zhang and H. Zhu, Towards intrinsic phonon transport in single-layer MoS2. Ann. Phys-Berlin. 528, 504–511 (2016).

    Article  CAS  Google Scholar 

  42. H. Wang, J. Xiang, B. Dai, Ge. Ni-Na, Z. Xiao and Ji. Guang, Enhanced Thermoelectric Performance of a HfS2 Bilayer by Strain Engineering. J. Electron. Mater. 52, 6537-6550 (2023)

  43. J. Shen, D. Han, B. Zhang, R. Cao, Y. Liu, S. Zheng, H. Li, Y. Jiang, Y. Xue and M. Xue, First-principles study on phonon transport properties of MoTe2 and WTe2 monolayers in different phases. Phys. E Low-dimens. Syst. Nanostruct. 145, 115509 (2023).

    Article  CAS  Google Scholar 

  44. X. Wu, V. Varshney, J. Lee, T. Zhang, J.L. Wohlwend, A.K. Roy and T. Luo, Hydrogenation of penta-graphene leads to unexpected large improvement in thermal conductivity. Nano Lett. 16, 3925–3935 (2016).

    Article  CAS  Google Scholar 

  45. L. Lindsay and D.A. Broido, Three-phonon phase space and lattice thermal conductivity in semiconductors. J. Phys. Condens. Matter 20, 165209 (2008).

    Article  Google Scholar 

  46. L. Lindsay, First principles peierls-Boltzmann phonon thermal transport: a topical review. Nanosc. Microsc. Therm. 20, 67–84 (2016).

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors acknowledge support from the open project of Key Laboratory of Green Fabrication and Surface Technology of Advanced Metal Materials (Anhui University of Technology), Ministry of Education (No. GFST2023KF04), and National Natural Science Foundation of China (No. 12004329).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Dan Han or Yuxiong Xue.

Ethics declarations

Conflict of interest

There are no conflicts to declare.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 213 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, B., Tu, H., Cai, Y. et al. Effects of Biaxial Strain on Phonon Thermal Transport Properties of Monolayer T′-WS2: A First-Principles Study. J. Electron. Mater. 53, 733–742 (2024). https://doi.org/10.1007/s11664-023-10805-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-023-10805-z

Keywords

Navigation