Skip to main content
Log in

Facile Synthesis and High-Efficiency Visible-Light-Driven Photocatalytic Performance of Nanoscale Carbon/Ca Aluminate Nanoplates

  • Original Research Article
  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

Nanoscale carbon/Ca aluminate nanoplates (NC–CAS) with different NC content, orthorhombic Ca5Al6O14 and hexagonal C phases were obtained by a facile route. X-ray diffraction and electron microscopy observation show that the thickness of the nanoplates is about 50 nm. NC–CAS possesses a polycrystalline structure. The band gap of the NC–CAS decreases to 1.78 eV with increasing NC content to 5 wt.%. NC–CAS exhibit strong visible-light absorption performance owing to the NC introduction into the CAS. Results showed that 20 mL gentian violet (GV, concentration of 10 mg L−1) can be degraded over a period of 30 min using 20 mg NC–CAS with NC content of 5 wt.% under visible light. The visible-light catalytic activity of the NC–CAS for GV degradation is greatly enhanced due to the reduction of band gap and recombination efficiency of carriers. Hydroxyl radicals and holes are the main reaction active substances. NC–CAS photocatalysts are stable and highly efficient for GV degradation under visible light.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. N. Jeong, S.O. Han, H. Kim, C. Kim, S. Hong, S.C. Park, and M.S. Jang, Synthesis of calcium aluminate nanoplates and nanochains from the woody biomass. Mater. Charact. 110, 68 (2015).

    CAS  Google Scholar 

  2. J.M. Liang, L.L. He, Z.Q. Shen, and D.L. Zhang, Preparation, characterization and luminescence properties of Eu doped CaAl2O4 nanocones. Mod. Phys. Lett. B 27, 13410181 (2013).

    Google Scholar 

  3. J.M.R. Mercury, A.H.D. Az, and P. Pena, Synthesis of CaAl2O4 from powders: particle size effect. J. Eur. Ceram. Soc. 25, 3269 (2005).

    Google Scholar 

  4. L. Hermansson, A review of nanostructured Ca-aluminate based biomaterials within odontology and orthopedics. J. Korean Ceram. Soc. 55, 95 (2018).

    CAS  Google Scholar 

  5. A. Gaki, T. Perraki, and G. Kakali, Wet chemical synthesis of monocalcium aluminate. J. Eur. Ceram. Soc. 27, 1785 (2007).

    CAS  Google Scholar 

  6. S.L. Yang, G.Q. Xiao, D.H. Ding, Y. Ren, L.H. Lv, P. Yang, and J.Y. Gao, Solid-phase combustion synthesis of calcium aluminate with CaAl2O4 nanofiber structures. Ceram. Int. 44, 6186 (2018).

    CAS  Google Scholar 

  7. K. Kawaguchi, Y. Suzuki, T. Goto, S.H. Cho, and T. Sekino, Homogeneously bulk porous calcium hexaaluminate (CaAl12O19): reactive sintering and microscture development. Ceram. Int. 44, 4462 (2018).

    CAS  Google Scholar 

  8. N. Madhusudhana, K. Yogendra, K.M. Mahadevan, S. Naik, and H. Gopalappa, Photocatalytic degradation of Coralene dark red 2B dye using calcium aluminate (CaAl2O4) catalyst. Environ. Sci. 6, 159 (2011).

    CAS  Google Scholar 

  9. C.S. Chen, X.D. Xie, G.J. Zhao, B. Zeng, X.T. Ning, S.Y. Cao, Y. Xiao, Y.P. Mei, X.M. Meng, and M.X. Huang, Graphene/multi-walled carbon nanotube composite as an effective supports to enhance the photocatalytic property of Cu-doped ZnO nanoparticles. Funct. Mater. Lett. 6, 1350062 (2013).

    Google Scholar 

  10. F. Li and B. Dong, Facile two-step synthesis of Ag nanoparticles dispersed on N, S co-doped RGO for highly efficient plasmonic photocatalytic water purification. Catal. Commun. 119, 42 (2019).

    Google Scholar 

  11. K. Shetty, B.S. Prathibha, D. Rangappa, K.S. Anantharaju, H.P. Nagaswarupa, H. Nagabhushana, and S.C. Prashantha, Photocatalytic study for fabricated Ag doped and undoped MgFe2O4 nanoparticles. Mater. Today 4, 11764 (2017).

    Google Scholar 

  12. A.J. Deng, Z.Y. Xue, C.H. Yu, J.F. Huang, H.B. Pan, and L.Z. Pei, Rare metal doping of the hexahydroxy strontium stannate with enhanced photocatalytic performance for organic pollutants. J. Mater. Res. Technol. 19, 1073 (2022).

    CAS  Google Scholar 

  13. L.Z. Pei, S. Wang, N. Lin, H.D. Liu, and Y.H. Guo, Vanadium doping of stronium germanate and their visible photocatalytic properties. RSC Adv. 4, 48144 (2014).

    CAS  Google Scholar 

  14. Y.X. Xiao, Y. Zhang, L.J. Ji, J.B. Yang, J. Wu, T. Jia, Z.Q. Liu, Q.Z. Liu, Y.F. Qi, and J.J. Han, Effect of doping on structural, and optical properties of BiOI nanosheets: As a model of photocatalytic activity in heavy metal removal under visible light. Mater. Chem. Phys. 267, 124691 (2021).

    CAS  Google Scholar 

  15. A.J. Antony, S.M.J. Kala, C. Joel, R.B. Bennie, and S. Praveendaniel, Enhancing the visible light induced photocatalytic properties of WO3 nanoparticles by doping with vanadium. J. Phys. Chem. Solids. 157, 110169 (2021).

    CAS  Google Scholar 

  16. C. Orona-Návar, Y. Park, V. Srivastava, N. Hernández, J. Mahlknecht, M. Sillanpää, and N. Ornelas-Soto, Gd3+ doped BiVO4 and visible light-emitting diodes (LED) for photocatalytic decomposition of bisphenol A, bisphenol S and bisphenol AF in water. J. Environ. Chem. Eng. 9, 105842 (2021).

    Google Scholar 

  17. F.H. Tao, Z.Y. Xue, J.F. Huang, F.Y. Li, Z.Y. Cai, and L.Z. Pei, Rb (Dy)-doped SrSn(OH)6 for the photodegradation of gentian violet. J. Mater. Sci. Mater. Electron. 33, 17343 (2022).

    CAS  Google Scholar 

  18. M. Freeda and T.D. Subash, Optical characterization of dysporsium doped calcium aluminate nanophosphor (CaAl2O4:Dy) by sol-gel method. Mater. Today 4, 4290 (2017).

    Google Scholar 

  19. J.Y. Du, C.F. Wang, P.C. Yuan, Q. Shu, N. Xu, Y. Yang, S.Q. Qi, Y. Ye, and C.Q. Zhu, One-step hydrothermal synthesis of nitrogen-doped carbon dots as a super selective and sensitive probe for sensing metronidazole in multiple samples. Anal. Methods 13, 4652 (2021).

    CAS  Google Scholar 

  20. Y.H. Liu, B.L. Xu, M.Z. Lu, S.S. Li, J. Guo, F.Z. Chen, X.L. Xiong, Z. Yin, H.Y. Liu, and D.S. Zhou, Ultrasmall Fe-doped carbon dots nanozymes for photoenhanced antibacterial therapy and would healing. Bioact. Mater. 12, 246 (2022).

    CAS  Google Scholar 

  21. J. Zhang, Y. Ma, Y.L. Du, H.Z. Jiang, D.D. Zhou, and S.S. Dong, Carbon nanodots/WO3 nanorods Z-scheme composites: remarkably enhanced photocatalytic performance under broad spectrum. Appl. Catal. B 209, 253 (2017).

    CAS  Google Scholar 

  22. J. Zhang, Y.L. Tang, G. Hu, B.L. Gao, Z.X. Gan, and P.K. Chu, Carbon nanodots-based nanocomposites with enhanced photocatalytic performance and photothermal effects. Appl. Phys. Lett. 111, 013904 (2017).

    Google Scholar 

  23. P.J. Yang, J.H. Zhao, J. Wang, B.Y. Cao, L. Li, and Z.P. Zhu, Construction of Z-scheme carbon nanodots/WO3 with highly enhanced photocatalytic hydrogen production. J. Mater. Chem. A 3, 8256 (2015).

    CAS  Google Scholar 

  24. H.J. Chen, F.Y. Li, F.H. Tao, J.F. Huang, Y. Zhang, and L.Z. Pei, Bismuth oxide/carbon nanodots/indium oxide heterojunctions with enhanced visible light photocatalytic performance. J. Mater. Sci. Mater. Electron. 33, 7154 (2022).

    CAS  Google Scholar 

  25. D.D. Liu, Z.S. Wu, F. Tian, B.C. Ye, and Y.B. Tong, Synthesis of N and La co-doped TiO2/AC photocatalyst by microwave irradiation for the photocatalytic degradation of naphthalene. J. Alloys Compd. 676, 489 (2016).

    CAS  Google Scholar 

  26. H. Bortz and F.S. Ohuchi, An X-ray photoelectron spectroscopy study of the interfacial relations between titanium and cordierite-based ceramic thin films. J. Appl. Phys. 64, 2054 (1988).

    CAS  Google Scholar 

  27. K. Ohbayashi, K. Yoshida, M. Anma, Y. Takai, and H. Hayakawa, Bismuth valence studies of as-grown superconducting Bi-Sr-Ca-Cu-O thin films with Tc(zero) from 98 K to 66 K. J. Appl. Phys. 31, L953 (1992).

    CAS  Google Scholar 

  28. S. Kohiki, T. Wada, S. Kawashima, H. Takagi, S. Uchida, and S. Tanaka, Photoemission from single-crystalline Bi-Sr-Ca-Cu-O. Phys. Rev. B. 38, 7051 (1988).

    CAS  Google Scholar 

  29. R. Haerle, E. Riedo, A. Pasquarello, and A. Baldereschi, Sp2/sp3 hybridization ratio in amorphous carbon from C 1s core-level shifts: x-ray photoelectron spectroscopy and first-principles calculation. Phys. Rev. B 65, 45101 (2001).

    Google Scholar 

  30. I.L. Bolotin, S.H. Tetzler, and L. Hanley, XPS and QCM studies of hydrocarbon and fluorocarbon polymer films bombarded by 1–20 keV C60 ions. J. Phys. Chem. C. 111, 9953 (2007).

    CAS  Google Scholar 

  31. Z.Z. Sun, X.Y. Wang, Q.M. Cong, X. Zhang, C.G. Fan, and L.Z. Pei, Synthesis of calcium aluminate nanoflakes for degradation of organic pollutants. Toxicol. Environ. Chem. (2023). https://doi.org/10.1080/02772248.2023.2203494.

    Article  Google Scholar 

  32. Y.B. Tong, J.M. Shen, S.X. Zhao, Z.L. Chen, J. Kang, B.Y. Wang, L.Q. Sun, and L.B. Bi, Comparative study of BiVO4 and BiVO4/Ag2O regarding their properties and photocatalytic degradation mechanism. New J. Chem. 46, 11608 (2022).

    CAS  Google Scholar 

  33. H. Xu, H. Li, C. Wu, J. Chu, Y. Yan, H. Shu, and Z. Gu, Preparation, characterization and photocatalytic properties of Cu-loaded BiVO4. J. Hazard. Mater. 153, 877 (2008).

    CAS  Google Scholar 

  34. O. Yayapao, T. Thongtem, A. Phuruangrat, and S. Thongtem, Sonochemical synthesis of Dy-doped ZnO nanostructures and their photocatalytic properties. J. Alloys Compd. 576, 72 (2013).

    CAS  Google Scholar 

  35. C.S. Chen, W. Mei, C. Wang, Z. Yang, X.A. Chen, X.H. Chen, X.H. Chen, and T.G. Liu, Synthesis of a flower-like SnO/ZnO nanostructure with high catalytic activity and stability under natural sunlight. J. Alloys Compd. 826, 154122 (2020).

    CAS  Google Scholar 

  36. L.Z. Pei, S. Wang, N. Lin, H.D. Liu, and H.Y. Yu, Calcium germanate nanowires by vanadium doping with improved photocatalytic activities. J. Exp. Nanosci. 10, 1223 (2015).

    CAS  Google Scholar 

  37. R.J. Tayade, R.G. Kulkarni, and R.V. Jasra, Transition metal ion impregnated mesoporous TiO2 for photocatalytic degradation of organic contaminants in water. Ind. Eng. Chem. Res. 45, 5231 (2006).

    CAS  Google Scholar 

  38. M. Freeda and T.D. Subash, Comparison of photoluminescence studies of lanthanum, terbium doped calcium aluminate nanophosphors (CaAl2O4:La, CaAl2O4:Tb) by sol-gel method. Mater. Today 4, 4302 (2007).

    Google Scholar 

  39. Q.Y. Wang, H.Q. Jiang, S.Y. Zang, J.S. Li, and Q.F. Wang, Gd, C, N and P quaternary doped anatase-TiO2 nano-photocatalyst for enhanced photocatalytic degradation of 4-chlorophenol under simulated sunlight irradiation. J. Alloys Compd. 586, 411 (2014).

    CAS  Google Scholar 

  40. S.A. Mirsalari and A. Nezamzadeh-Ejhieh, Focus on the photocatalytic pathway of the CdS-AgBr nano-catalyst by using the scavenging agents. Sep. Purif. Technol. 250, 117235 (2020).

    CAS  Google Scholar 

  41. M.U. Azam, M. Tahir, M. Umer, M.M. Jaffar, and M.G.M. Nawawi, Engineering approach to enhance photocatalytic water splitting for dynamic H2 production using La2O3/TiO2 nanocatalyst in a monolith photoreactor. Appl. Surf. Sci. 484, 1089 (2019).

    CAS  Google Scholar 

  42. H.J. Chen, C.H. Yu, Z.Y. Xue, P.X. Wang, Z. Wang, Q.M. Cong, L.Z. Pei, and C.G. Fan, Synthesis of Li-doped bismuth oxide nanoplates, Co nanoparticles modification and good photocatalytic activity toward organic pollutants. Toxicol. Environ. Chem. 102, 356 (2020).

    CAS  Google Scholar 

  43. C.S. Chen, X.D. Xie, S.Y. Cao, T.G. Liu, L.W. Lin, X.H. Chen, Q.C. Liu, J. Kuang, and Y. Xiao, Preparation and photocatalytic activity of multi-walled carbon nanotubes/Mg-doped ZnO nanohybrids. Mater. Sci-Pol. 33, 460 (2015).

    CAS  Google Scholar 

  44. N. Omrani and A. Nezamzadeh-Ejhieh, A comprehensive study on the enhanced photocatalytic activity of Cu2O/BiVO4/WO3 nanoparticles. J. Photochem. Photobiol. A 389, 112223 (2020).

    CAS  Google Scholar 

  45. X.Y. Liu and C.S. Chen, Mxene enhanced the photocatalytic activity of ZnO nanorods under visible light. Mater. Lett. 261, 127127 (2020).

    CAS  Google Scholar 

  46. J.N. Qu, Y. Du, P.H. Ji, Z.F. Li, N. Jiang, X.Y. Sun, L. Xue, H.Y. Li, and G.L. Sun, Fe, Cu co-doped BiOBr with improved photocatalytic ability of pollutants degradation. J. Alloys Compd. 881, 160391 (2021).

    CAS  Google Scholar 

  47. Z. Wang, H.J. Chen, F.L. Qiu, Z.Y. Xue, C.H. Yu, P.X. Wang, Q.M. Cong, L.Z. Pei, C.G. Fan, and Y. Zhang, Facile cetyltrimethylammonium bromide (CTAB)-assisted synthesis of calcium bismuthate nanoflakes with solar light photocatalytic performance. Curr. Nanosci. 17, 315 (2021).

    CAS  Google Scholar 

  48. S.L. Hu, W.J. Zhang, N. Li, Q. Chang, and J.L. Yang, Integrating biphase γ- and α-Fe2O3 with carbon dots as a synergistic nanozyme with easy recycle and high catalytic activity. Appl. Surf. Sci. 545, 8 (2021).

    Google Scholar 

  49. B. Demir, H. Moulahoum, F. Ghorbanizamani, F.B. Barlas, O. Yesiltepe, Z.P. Gumus, K. Meral, D.O. Demirkol, and S. Timur, Carbon dots and curcumin-loaded CD44-targeted liposomes for imaging and tracking cancer chemotherapy: a multi-purpose tool for theranostics. J. Drug Deliv. Sci. Technol. 62, 9 (2021).

    Google Scholar 

Download references

Acknowledgments

Not applicable.

Funding

This research was supported by the Natural Science Foundation of Anhui Province of P. R. China (No. 2008085ME172) and the National Scholarship Fund of China Scholarship Council (CSC) (No. 202008340046).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lizhai Pei.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, Z., Cong, Q., Wang, X. et al. Facile Synthesis and High-Efficiency Visible-Light-Driven Photocatalytic Performance of Nanoscale Carbon/Ca Aluminate Nanoplates. J. Electron. Mater. 52, 7007–7020 (2023). https://doi.org/10.1007/s11664-023-10642-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-023-10642-0

Keywords

Navigation