Skip to main content
Log in

Spectroscopic Ellipsometry Study of Thermally Evaporated Tin Telluride (SnTe) Thin Films

  • Original Research Article
  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

In this study, SnTe thin films were successfully synthesized through thermal evaporation, and the films were characterized, with a particular emphasis on the use of spectroscopic ellipsometry (SE). The structural properties of the SnTe thin films were investigated by employing grazing incidence x-ray diffraction (GI-XRD), which indicated that the films exhibited polycrystalline growth. The thickness and density of the film were estimated to be approximately 31 nm and 6.24 g/cm3, respectively, by analyzing the Kiessig fringe pattern obtained from x-ray reflectivity (XRR). Raman spectroscopy revealed the longitudinal optical (LO) and transverse optical (TO) modes, with a small red shift in peak positions due to the quantum confinement effect. A comparative analysis revealed that the Raman modes in the SnTe thin film were red-shifted compared to those in the bulk SnTe powder, which may be attributed to the nanometer size effect. The optical properties, studied in the wavelength range of 300–1000 nm using SE, showed that the film’s refractive index (n) decreases while the extinction coefficient (k) first increases and then gradually decreases with increasing photon energy. The spectral signature of the extinction coefficient (k) indicated an increase in photon absorption in the near-infrared (NIR) region. Moreover, the optical conductivity (σopt) plot showed an improved optical response in the vicinity of 1.40 eV in the NIR range. The direct transition optical bandgap (\({E}_{\mathrm{opt}}^{g}\)) obtained for the SnTe thin films was 1.20 eV, and this, along with the better optical response, suggests the potential application of the films for NIR detection.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. E. Roduner, Size matters: why nanomaterials are different. Chem. Soc. Rev. 35, 583 (2006).

    Article  CAS  Google Scholar 

  2. D.K. Bhat, and U.S. Shenoy, Enhanced thermoelectric performance of bulk tin telluride: synergistic effect of calcium and indium co-doping. Mater. Today Phys. 4, 12 (2018).

    Article  Google Scholar 

  3. Y.X. Chen, F. Li, D. Li, Z. Zheng, J. Luo, and P. Fan, Thermoelectric properties of tin telluride quasi crystal grown by vertical bridgman method. Mater. 12, 3001 (2019).

    Article  CAS  Google Scholar 

  4. V. Karthikeyan, J.U. Surjadi, J.C.K. Wong, V. Kannan, K.-H. Lam, X. Chen, Y. Lu, and V.A.L. Roy, Wearable and flexible thin film thermoelectric module for multi-scale energy harvesting. J. Power Sources 455, 227983 (2020).

    Article  CAS  Google Scholar 

  5. S. Santhanam and A.K. Chaudhuri, Preparation and sensitization of tin telluride infrared detectors. Bull. Mater. Sci. 3, 295 (1981).

    Article  CAS  Google Scholar 

  6. S. Gu, K. Ding, J. Pan, Z. Shao, J. Mao, X. Zhang, and J. Jie, Self-driven, broadband and ultrafast photovoltaic detectors based on topological crystalline insulator SnTe/Si heterostructures. J. Mater. Chem. A 5, 11171 (2017).

    Article  CAS  Google Scholar 

  7. G. Han, R. Zhang, S.R. Popuri, H.F. Greer, M.J. Reece, J.G. Bos, W. Zhou, A.R. Knox, and D.H. Gregory, Large-scale surfactant-free synthesis of p-type SnTe nanoparticles for thermoelectric applications. Mater. 10(3), 233 (2017).

    Article  Google Scholar 

  8. B. Radisavljevic, A. Radenovic, J. Brivio, V. Giacometti, and A. Kis, Single-layer MoS2 transistors. Nat. Nanotechnol. 6, 147 (2011).

    Article  CAS  Google Scholar 

  9. O. Lopez-Sanchez, D. Lembke, M. Kayci, A. Radenovic, and A. Kis, Ultrasensitive photodetectors based on monolayer MoS2. Nat. Nanotechnol 8, 497 (2013).

    Article  CAS  Google Scholar 

  10. S. Li, X. Li, Z. Ren, and Q. Zhang, Recent progress towards high performance of tin chalcogenide thermoelectric materials. J. Mater. Chem. A 6, 2432 (2018).

    Article  CAS  Google Scholar 

  11. Y. Li, T. Ding, D.K. Sang, M. Wu, J. Li, C. Wang, F. Liu, H. Zhang, and H. Xie, Evolutional carrier mobility and power factor of two-dimensional tin telluride due to quantum size effects. J. Mater. Chem. C 8, 4181 (2020).

    Article  CAS  Google Scholar 

  12. G. Rajesh, N. Muthukumarasamy, D. Velauthapillai, K. Mohanta, V. Ragavendran, and S.K. Batabyal, Photoinduced electrical bistability of sputter deposited CdZnTe thin films. Mater. Res. Express 5, 026412 (2018).

    Article  Google Scholar 

  13. M.V. Kovalenko, W. Heiss, E.V. Shevchenko, J.-S. Lee, H. Schwinghammer, A.P. Alivisatos, and D.V. Talapin, SnTe nanocrystals: a new example of narrow-gap semiconductor quantum dots. J. Am. Chem. Soc. 129, 11354 (2007).

    Article  CAS  Google Scholar 

  14. F. Li, J. Fu, A. Torche, S. Kull, A. Kornowski, R. Lesyuk, G. Bester, and C. Klinke, Single-crystalline colloidal quasi-2D tin telluride. Adv. Mater. Interfaces 7, 2000410 (2020).

    Article  CAS  Google Scholar 

  15. I.A. Mahdy, E.A. Mahmoud, and M.A. Mahdy, Tin telluride quantum dot thin films: size dependent structural, optical and electrical properties. Mater. Sci. Semicond. Process. 121, 105398 (2021).

    Article  CAS  Google Scholar 

  16. M. Salavati-Niasari, M. Bazarganipour, F. Davar, and A.A. Fazl, Simple routes to synthesis and characterization of nanosized tin telluride compounds. Appl. Surf. Sci. 257, 781 (2010).

    Article  CAS  Google Scholar 

  17. Y. Zou, Z. Chen, J. Lin, X. Zhou, W. Lu, J. Drennan, and J. Zou, Morphological control of SnTe nanostructures by tuning catalyst composition. Nano Res. 8, 3011 (2015).

    Article  CAS  Google Scholar 

  18. K. Tsuboi, N. Su, S. Kobayashi, K. Sugimoto, and M. Kobayashi, Molecular beam epitaxy of stoichiometric tin–telluride thin films. J. Cryst. Growth. 597, 126805 (2022).

    Article  CAS  Google Scholar 

  19. T. Chandel, V. Thakur, S. Halaszova, M. Prochazka, D. Haško, D. Velic, and R. Poolla, Growth and properties of sprayed CZTS thin films. J. Electron. Mater. 47, 5477 (2018).

    Article  CAS  Google Scholar 

  20. H. Kafashan, X-ray diffraction line profile analysis of undoped and Se-doped SnS thin films using Scherrer’s, Williamson-Hall and Size-Strain plot methods. J. Electron. Mater. 48, 1294 (2019).

    Article  CAS  Google Scholar 

  21. B. Nasiri-Tabrizi, Thermal treatment effect on structural features of mechano-synthesized fluorapatite-titania nanocomposite: a comparative study. J. Adv. Ceram. 3, 31 (2014).

    Article  CAS  Google Scholar 

  22. H. Kiessig, Untersuchungen zur Totalreflexion von Röntgenstrahlen. Ann. Phys. 402, 715–768 (1931).

    Article  Google Scholar 

  23. F. Abelès, Recherches sur la propagation des ondes électromagnétiques sinusoïdales dans les milieux stratifiés. Ann. Phys. 12, 596 (1950).

    Article  Google Scholar 

  24. L.G. Parratt, Surface studies of solids by total reflection of X-rays. Phys. Rev. 95, 359 (1954).

    Article  Google Scholar 

  25. A. Gibaud, M.S. Chebil, and T. Beuvier, X-Ray reflectivity, Surface Science Techniques. ed. G. Bracco, and B. Holst (Berlin Heidelberg: Springer, 2013).

    Google Scholar 

  26. T.C. Huang, R. Gilles, and G. Will, Thin-film thickness and density determination from x-ray reflectivity data using a conventional power diffractometer. Thin Solid Films 230, 99 (1993).

    Article  CAS  Google Scholar 

  27. D. Nečas, and P. Klapetek, Gwyddion: an open-source software for SPM data analysis. Open Phys. 10, 181 (2012).

    Article  Google Scholar 

  28. S. Sugai, K. Murase, and H. Kawamura, Observation of soft TO-phonon in SnTe by Raman scattering. Solid State Commun. 23, 127 (1977).

    Article  CAS  Google Scholar 

  29. P. Tanwar, A.K. Panwar, S. Singh, and A.K. Srivatava, Microstructural and optical properties investigation of variable thickness of tin telluride thin films. Thin Solid Films 693, 137708 (2020).

    Article  CAS  Google Scholar 

  30. H. Wang, J. Hwang, C. Zhang, T. Wang, W. Su, H. Kim, J. Kim, J. Zhai, X. Wang, H. Park, W. Kim, and C. Wang, Enhancement of the thermoelectric performance of bulk SnTe alloys via the synergistic effect of band structure modification and chemical bond softening. J. Mater. Chem. A 5, 14165 (2017).

    Article  CAS  Google Scholar 

  31. J. Lee and T. Tsakalakos, Influences of growth conditions on physical, optical properties, and quantum size effects of CdS nanocluster thin films. Nanostruct. Mater. 8(4), 381 (1997).

    Article  CAS  Google Scholar 

  32. C. An, K. Tang, B. Hai, G. Shen, C. Wang, and Y. Qian, Solution-phase synthesis of monodispersed SnTe nanocrystallites at room temperature. Inorg. Chem. Commun. 6, 181 (2003).

    Article  CAS  Google Scholar 

  33. J. Zuo, C. Xu, Y. Liu, and Y. Qian, Crystallite size effects on the Raman spectra of Mn3O4. Nanostruct. Mater. 10, 1331 (1998).

    Article  CAS  Google Scholar 

  34. R. Das, G.G. Khan, S. Varma, G.D. Mukherjee, and K. Mandal, Effect of quantum confinement on optical and magnetic properties of Pr–Cr-codoped bismuth ferrite nanowires. J. Phys. Chem. C 117, 20209 (2013).

    Article  CAS  Google Scholar 

  35. M. Schubert, 9—Theory and Application of Generalized Ellipsometry, Handbook of Ellipsometry. ed. H.G. Tompkins, and E.A. Irene (Norwich: William Andrew Publishing, 2005).

    Google Scholar 

  36. H.G. Tompkins and E.A. Irene, Handbook of Ellipsometry (Norwich, NY: William Andrew Publishing, 2005).

    Book  Google Scholar 

  37. A.E.H. Gaballah, P. Nicolosi, N. Ahmed, K. Jimenez, G. Pettinari, A. Gerardino, and P. Zuppella, Vacuum ultraviolet quarter wave plates based on SnTe/Al bilayer: design, fabrication, optical and ellipsometric characterization. Appl. Surf. Sci. 463, 75 (2019).

    Article  CAS  Google Scholar 

  38. R.W. Collins and A.S. Ferlauto, 2—Optical Physics of Materials, Handbook of Ellipsometry. ed. H.G. Tompkins, and E.A. Irene (Norwich: William Andrew Publishing, 2005).

    Google Scholar 

  39. K. Neyvasagam, N. Soundararajan, V. Venkatraman, and V. Ganesan, Ellipsometric studies on cupric telluride thin films. Vacuum 82, 72 (2007).

    Article  CAS  Google Scholar 

  40. R. Raue, K. Kunde, and A. Engel, Surface and Thin-Film Analysis. Photon Detection (Weinheim: Wiley, 2012).

    Google Scholar 

  41. J. Tauc, Optical Properties of Amorphous Semiconductors. In: Tauc, J. (eds) Amorphous and Liquid Semiconductors, (Springer US, Boston, 1974).

  42. R. Moshwan, L. Yang, J. Zou, and Z.G. Chen, Eco-friendly SnTe thermoelectric materials: progress and future challenges. Adv. Funct. Mater. 27, 1703278 (2017).

    Article  Google Scholar 

  43. X. Xue, W. Ji, Z. Mao, H. Mao, Y. Wang, X. Wang, W. Ruan, B. Zhao, and J.R. Lombardi, Raman investigation of nanosized TiO2: effect of crystallite size and quantum confinement. J. Phys. Chem. C 116, 8792 (2012).

    Article  CAS  Google Scholar 

  44. V.D. Das and S. Vaidehi, Variation of energy gap and resistivity minimum position with thickness in bismuth thin films. Phys. Status Solidi (a) 71, 351 (1982).

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to express their thanks to the Center for Interdisciplinary Research (CIR) at MNNIT Allahabad for providing facilities for the synthesis and characterization of the sample, and Prof. K. N. Uttam, Saha’s Spectroscopy Laboratory, Department of Physics, University of Allahabad, for providing the Raman facility. The authors also acknowledge CAFMC (VBSPU) and Department of Physics (BHU) for their FE-SEM and TEM facility respectively.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Naresh Kumar.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Singh, A.K., Yadav, B.S., Vishwakarma, A.K. et al. Spectroscopic Ellipsometry Study of Thermally Evaporated Tin Telluride (SnTe) Thin Films. J. Electron. Mater. 52, 7132–7142 (2023). https://doi.org/10.1007/s11664-023-10635-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-023-10635-z

Keywords

Navigation