Skip to main content
Log in

Measurement of Mixing Enthalpies for Sn-Bi-Sb Lead-Free Solder System

  • Original Research Article
  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

Predictions of the thermodynamic behavior of higher-order multicomponent alloys from thermodynamic data of binary and ternary systems have been proven to be very crucial, as it is extremely challenging to investigate the thermodynamic properties of higher-order systems. Therefore, it is necessary to assess the thermodynamic data of various binary and ternary systems that are important to lead-free solder applications. The literature lacks thermodynamic information for some lead-free systems. Tin–bismuth–antimony (Sn-Bi-Sb) is a good option as a solder ternary system free of lead. The integral and partial mixing enthalpies of a Sn-Bi-Sb system were determined using a drop-solution calorimeter. At 923 K, 973 K, and 1023 K, calorimetric measurements of the Sn-Bi-Sb system were made along five of the cross-sections. Pieces of pure tin were dropped into molten Sb0.25Bi0.75, Sb0.50Bi0.50, Sb0.75Bi0.25 alloys, bismuth into Sb0.50Sn0.50 , and antimony into Bi0.50Sn0.50. Using the calorimetric data, partial and integral thermodynamic properties were determined. The integral mixing enthalpy was used to plot iso-enthalpy curves. It was found that the mixing enthalpies were temperature-independent. The substitutional solution Redlich–Kister–Muggianu model was used to derive the interaction parameter based on ternary enthalpy values and, to obtain these parameters, a least square fitting model was used. When the estimated and measured values were compared, it was found that there was a good agreement between them.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. B.R. Allenby, Achieving sustainable development through industrial ecology, in Proceeding of Surface Mount International Conference (1992), pp. 1–28

  2. D. Jaiswal, V. Singh, D. Pathote, and C.K. Behera, Electrochemical behaviour of lead-free Sn-0.7Cu-xIn solders alloys in 3.5 wt% NaCl solution. J. Mater. Sci. Mater. Electron. 32(18), 23371 (2021). https://doi.org/10.1007/s10854-021-06824-3.

    Article  CAS  Google Scholar 

  3. M.R. Kumar, S. Mohan, and C.K. Behera, Measurements of mixing enthalpy for a lead-free solder Bi-In-Sn system. J. Electron. Mater. 48(12), 8096 (2019). https://doi.org/10.1007/s11664-019-07646-0.

    Article  CAS  Google Scholar 

  4. M.R. Kumar, S. Mohan, and C.K. Behera, Thermodynamic accessment experimentally on Bi-Sn system by calorimeter. Mater. Today Proc. 5(14), 27777 (2018). https://doi.org/10.1016/j.matpr.2018.10.013.

    Article  CAS  Google Scholar 

  5. D. Jaiswal, D. Pathote, V. Singh, and C.K. Behera, Electrochemical behaviour of lead-free Sn-In-Al solders alloys in 3.5 wt% NaCl solution. Mater. Today Proc. 57, 187 (2022). https://doi.org/10.1016/j.matpr.2022.02.315.

    Article  CAS  Google Scholar 

  6. D. Pathote, D. Jaiswal, V. Singh, and C.K. Behera, Optimization of electrochemical corrosion behavior of 316L stainless steel as an effective biomaterial for orthopedic applications. Mater. Today Proc. 57, 265 (2022). https://doi.org/10.1016/j.matpr.2022.02.501.

    Article  CAS  Google Scholar 

  7. M.R. Kumar, V. Singh, V.K. Rai, D. Jaiswal, and C.K. Behera, Investigation on mixing heat effect of bi-in and in-sn system at 730 K. Mater. Today Proc. 18, 2917 (2019). https://doi.org/10.1016/j.matpr.2019.07.161.

    Article  CAS  Google Scholar 

  8. D. Jaiswal, D. Pathote, V. Singh, and C.K. Behera, Effect of Al addition on electrochemical behavior of Sn-0.7Cu-xAl lead-free solders alloys in 3.5 wt% NaCl solution. J. Mater. Eng. Perform. 31(9), 7550 (2022). https://doi.org/10.1007/s11665-022-06771-y.

    Article  CAS  Google Scholar 

  9. J.S. Hwang, Implementing Lead-Free Electronics (New York: McGraw Hill Professional, 2004).

    Google Scholar 

  10. D. Pathote, D. Jaiswal, V. Singh, R.K. Gautam, and C.K. Behera, Wear behavior and microhardness studies of tantalum (Ta)-coated 316L stainless steel by DC magnetron sputtering for the orthopedic applications. J. Mater. Sci. (2022). https://doi.org/10.1007/s10853-022-07939-6.

    Article  Google Scholar 

  11. S. Nagasaki and E. Fujita, Research on phase diagrams focusing on specific heat measurements (II) On solid solution energy and abnormal liquids. J. Jpn. Inst. Met. 16, 317 (1952).

    Article  CAS  Google Scholar 

  12. W. Oelsen and K.F. Golucke, Thermodynamic study of In-Sn-Zn, Bi-Sn-Cu and Bi-Sn-Ni ternary systems as materials for lead-free soldering. Arch. Eisenh Uttenwes 289, 689 (1958).

    Article  Google Scholar 

  13. H. Ohtani and K. Ishida, A thermodynamic study of the phase equilibria in the Bi-Sn-Sb system. J. Electron. Mater. 23, 747 (1994).

    Article  CAS  Google Scholar 

  14. H.O. Samson, Heat content and heat of formation of molten alloys. Z. Met. 28, 197 (1936).

    Google Scholar 

  15. F.E. Wittig and F. Huber, Mixing enthalpies of Bi-Sn alloys. Z. Electrochem. 60, 1181 (1956).

    CAS  Google Scholar 

  16. A. Yazawa, T. Kawashima, and K. Itagaki, Measurements of heats of mixing in liquid alloys with the adiabatic calorimeter. J. Jpn. Inst. Met. 32, 1281 (1968).

    Article  CAS  Google Scholar 

  17. R.L. Sharkey and M.J. Pool, Partial heats of mixing in the Bi-Sn system. Met. Trans. 3, 1773 (1972).

    Article  CAS  Google Scholar 

  18. N. Asryan and A. Mikula, Thermodynamic properties of liquid Bi-Sn alloys. Z. Met. 95, 132 (2004).

    CAS  Google Scholar 

  19. A. Yazawa and K. Koike, Activity measurement in Sn-Pb, Sn-Bi, Sn-Tl and Sn-Pb-Bi alloys at 1100 C. J. Min. Met. Inst. Jpn. 184, 1593 (1968).

    Google Scholar 

  20. G. Rickert, P. Lamparterand, and S. Steeb, Activity measurement in Sn-Bi. Zenaau Z. Natur. Tl. A 31, 711 (1976).

    Google Scholar 

  21. H. Seltz and F.J. Dunkerley, A thermodynamic study of the Tin-Bismuth system. J. Am. Chem. Soc. 64, 1392 (1942).

    Article  CAS  Google Scholar 

  22. B.J. Lee, C.S. Oh, and J.H. Shim, Thermodynamic assessments of the Sn-In and Sn-Bi binary systems. J. Electron. Mater. 25, 983 (1996).

    Article  CAS  Google Scholar 

  23. M. Kawakami, The heat of mixing in molten metals. Sci. Rep. Tohoku Imp. Univ. 19, 521 (1930).

    CAS  Google Scholar 

  24. O.J. Kleppa, A calorimetric investigation of some binary and ternary liquid alloys rich in tin. J. Phys. Chem. 60, 842 (1956).

    Article  CAS  Google Scholar 

  25. R. Hultgrcn, R.L. Orr, P.D. Anderson, and K.K. Kelley, Selected Values of Thermodynamic Properties of Metals and Alloys (New York: Wiley, 1963).

    Google Scholar 

  26. F. Sommer, R. Luck, N. Rupfbolz, and B. Predel, Chemical short-range order in liquid Sb-Sn alloys proved with the aid of the dependence of the mixing enthalpies on temperature. Mater. Res. Bull. 18, 621 (1983).

    Article  CAS  Google Scholar 

  27. M. Azzaoui, M. Notin, and J. Hertz, Ternary experimental excess functions by means of high-order polynomials—enthalpy of mixing of liquid Pb-Sn-Sb alloys. Z. Met. 84, 545 (1993).

    CAS  Google Scholar 

  28. R.O. Frantik and H.J. Mcdonald, A thermodynamic study of the Tin-Antimony system. Trans. Electrochem. Soc. 88, 243 (1945).

    Article  Google Scholar 

  29. V. Vassiliev, M. Lelaurain, and J. Hertz, A new proposal for the binary (Sn, Sb) phase diagram and its thermodynamic properties based on a new EMF study. J. Alloy. Compd. 247, 223 (1997).

    Article  CAS  Google Scholar 

  30. S.W. Chen, C.C. Chen, W. Gierlotka, A.R. Zi, P.Y. Chen, and H.J. Wu, Phase equilibria of the Sn-Sb binary system. J. Electron. Mater. 37, 992 (2008).

    Article  CAS  Google Scholar 

  31. M. Hansen and K. Anderko, Constitution of Binary Alloys, 2nd ed., (New York: McGraw-Hill Companies Inc, 1958).

    Google Scholar 

  32. S. Terlicka, A. Dębski, W. Gąsior, A. Fornalczyk, and M. Saternus, Experimental results of the Li-Pb-Pt system obtained by the high temperature drop calorimetry. J. Mol. Liq. 332, 115824 (2021). https://doi.org/10.1016/j.molliq.2021.115824.

    Article  CAS  Google Scholar 

  33. D. Jendrzejczyk-Handzlik and P. Handzlik, Mixing enthalpies of liquid Au-Ga-In alloys. J. Mol. Liq. 301, 112439 (2020). https://doi.org/10.1016/j.molliq.2019.112439.

    Article  CAS  Google Scholar 

  34. C.J. Smithells, Metals Reference Book, 3rd ed., (London: Butterworths, 1962).

    Google Scholar 

  35. O. Kubaschewski and W. Seith, Heat of formation of non-ferrous metal alloys. Z. MetaUk. 30, 7 (1938).

    CAS  Google Scholar 

  36. Y.E. Geguzin and B.Y. Pines, Heat of formation of Bi-Sb metal alloys. Zhur. Fiz. Khim. 26, 27 (1952).

    Google Scholar 

  37. I. Katayama, D. Zivkovic, D. Manasijevic, T. Tanaka, Z. Zivkovic, and H. Yamashita, Thermodynamic properties of liquid Sn-Bi-Sb alloys. Netsu Sokutei 32, 40 (2005).

    CAS  Google Scholar 

  38. D. Manasijevic, J. Vrestal, D. Minic, A. Kroupa, D. Zivkovic, and Z. Zivkovic, Phase equilibria and thermodynamics of the Bi-Sb-Sn ternary system. J. Alloys Compd. 438(1–2), 150 (2007). https://doi.org/10.1016/j.jallcom.2006.08.021.

    Article  CAS  Google Scholar 

  39. O.E. Awe and O.M. Oshakuade, Theoretical prediction of thermodynamic activities of all components in the Bi-Sb-Sn ternary lead-free solder system and Pb-Bi-Sb-Sn quaternary system. Thermochim. Acta 589, 47 (2014). https://doi.org/10.1016/j.tca.2014.05.009.

    Article  CAS  Google Scholar 

  40. C. Zhang, S.D. Liu, G.T. Qian, J. Zhou, and F. Xue, Effect of Sb content on properties of Sn-Bi solders. Trans. Nonferrous Met. Soc. China (Engl. Ed.) 24(1), 184 (2014). https://doi.org/10.1016/S1003-6326(14)63046-6.

    Article  CAS  Google Scholar 

  41. A.V. Khvan, T. Babkina, A.T. Dinsdale, I.A. Uspenskaya, I.V. Fartushna, A.I. Druzhinina, A.B. Syzdykova, M.P. Belov, and I.A. Abrikosov, Thermodynamic properties of tin: part I experimental investigation, ab-initio modelling of α-, β-phase and a thermodynamic description for pure metal in solid and liquid state from 0 K. Calphad Comput. Coupling Phase Diagr. Thermochem. 65(December 2018), 50 (2019). https://doi.org/10.1016/j.calphad.2019.02.003.

    Article  CAS  Google Scholar 

  42. I. Ansara and N. Dupin, Cost 507 thermo chemical database for light metal alloys. European Commission DG X11 (Luxembourg: European Commission, 1998).

    Google Scholar 

  43. H. Ipser, H. Flandorfer, C.H. Luef, C. Schmetterer, and U. Saeed, Thermodynamics and phase diagrams of lead-free solder materials. Lead-Free Electron. Solder. A Spec. Issue J. Mater. Sci. Mater. Electron. (2007). https://doi.org/10.1007/978-0-387-48433-4_1.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. K. Behera.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Singh, V., Pathote, D., Jaiswal, D. et al. Measurement of Mixing Enthalpies for Sn-Bi-Sb Lead-Free Solder System. J. Electron. Mater. 52, 6316–6334 (2023). https://doi.org/10.1007/s11664-023-10579-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-023-10579-4

Keywords

Navigation