Skip to main content

Advertisement

Log in

PEDOT: PSS for Reinforced Performances of Co/Ni-MOF as Flexible Supercapacitor Electrodes

  • Original Research Article
  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

To overcome the limitations of low conductivity and poor stability of metal–organic framework materials (MOFs) used in flexible supercapacitors, a high-performance flexible electrode material has been prepared by combining the conductive polymer poly (3,4-ethylenedioxythiophene):poly(styrene sulfonate) (PEDOT:PSS) with a cobalt and nickel bimetallic organic framework (Co/Ni-MOF). The optimal formula of the fabricated MOF-based electrode material was determined by screening tests of different metal pairwise combinations and the tuning of mutual ratios. The characterizations of x-ray diffraction (XRD), transmission electron microscopy (TEM), and scanning electron microscopy (SEM) with energy-dispersive x-ray spectroscopy (EDS) indicated that PEDOT:PSS wraps around the surface of Co/Ni-MOF and encapsulates it internally, which helps to increase the electrochemical surface active area between ions/electrons and the electrolyte, consequently forming a high-performance complex called PEDOT:PSS@Co/Ni-MOF in a homogeneous crystal consistent with that of Co/Ni-MOF. In the presence of PEDOT:PSS, the specific capacitance was up to 860.5 F g−1, which is 366.5 F g−1 higher than that of Co/Ni-MOF without PEDOT:PSS at the same current density of 494 F g−1. The electrode assembled from PEDOT:PSS@Co/Ni-MOF has a very high energy density of 38.24 Wh kg−1, while its power density is as high as 402.06 W kg−1. Broadly, the combination of conductive polymer and MOFs can improve the capacitance performance, electrical conductivity, and tensile properties of the MOFs, which provides a promising new strategy to improve the capacitance performance of metal–organic framework materials, and can be extended to other metallic oxide materials.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

BTC:

1,3,5-benzenetricarboxylic acid

BMOF:

Bimetallic organic framework

C s :

Specific capacitance

CV:

Cyclic voltammetry

Co:

Cobalt

Co(NO3)2·6H2O:

Cobalt(II) nitrate hexahydrate

Co/Ni-MOF:

Cobalt and nickel bimetallic organic framework

Cu:

Copper

Cu(NO3)2·3H2O:

Cupric nitrate trihydrate

DMF:

N, N-dimethylformamide

E :

Energy density

EDS:

Energy-dispersive x-ray spectroscopy

EIS:

Electrochemical impedance spectroscopy

Fe:

Iron

Fe(NO3)3·9H2O:

Ferric nitrate nonahydrate

GCD:

Galvanostatic charge and discharge

I :

Current density

m :

Mass of the active material

MOFs:

Metal–organic framework materials

Ni:

Nickel

Ni(NO3)2·6H2O:

Nickel(II) chloride hexahydrate

P :

Power density

PEDOT:

Poly(3,4-ethylenedioxythiophene)

PSS:

Poly(styrene sulfonate)

PEDOT:PSS:

Poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate)

PEDOT:PSS@BMOF:

Poly(3, 4- ethylenedioxythiophene): poly (styrene sulfonate) complexed with bimetallic organic framework

PEDOT:PSS@Co/Ni-MOF:

Poly(3, 4- ethylenedioxythiophene): poly ( styrene sulfonate) complexed with cobalt and nickel bimetallic organic framework

PXRD:

Powder x-ray diffraction

S :

Seebeck coefficient

SEM:

Scanning electron microscopy

Δt :

Discharge time

TEM:

Transmission electron microscope

ΔV :

Potential window

XRD:

X-ray diffraction

Zn:

Zinc

Zn(NO3)2·6H2O:

Zinc nitrate hexahydrate

σ :

Electrical conductivity

\({\sigma }_{{E}_{0}}\) :

Transport coefficient

References

  1. J. Zhou, T. Wu, Y. Han, and S. Aryana, Fabrication of Mn-Ce bimetallic oxides as electrode material for supercapacitors with high performance. J. Electron. Mater. 50, 2725 (2021).

    Article  CAS  Google Scholar 

  2. Y. Yang, Y. Han, W. Jiang, Y. Zhang, Y. Xu, and A.M. Ahmed, Application of the supercapacitor for energy storage in China: role and strategy. Appl. Sci. 12, 354 (2022).

    Article  CAS  Google Scholar 

  3. A.E. Ostfeld, A.M. Gaikwad, Y. Khan, and A.C. Arias, High-performance flexible energy storage and harvesting system for wearable electronics. Sci. Rep. 6, 26122 (2016).

    Article  CAS  Google Scholar 

  4. L. Yang, C. Ruan, and Y. Li, Detection of viable salmonella typhimurium by impedance measurement of electrode capacitance and medium resistance. Biosens. Bioelectron. 19, 495 (2003).

    Article  CAS  Google Scholar 

  5. X. Hang, Y. Xue, Y. Cheng, M. Du, L. Du, and H. Pang, From Co-MOF to CoNi-MOF to Ni-MOF: a facile synthesis of 1D micro-/nanomaterials. Inorg. Chem. 60, 13168 (2021).

    Article  CAS  Google Scholar 

  6. G. Pacchioni, Sustainable flexible supercapacitors. Nat. Rev. Mater 7, 844 (2022).

    Article  Google Scholar 

  7. S. Bi, H. Banda, M. Chen, L. Niu, M. Chen, T. Wu, J. Wang, R. Wang, J. Feng, T. Chen, M. Dincă, A.A. Kornyshev, and G. Feng, Molecular understanding of charge storage and charging dynamics in supercapacitors with MOF electrodes and ionic liquid electrolytes. Nat. Mater. 19, 552 (2020).

    Article  CAS  Google Scholar 

  8. D.G. Wang, Z. Liang, S. Gao, C. Qu, and R. Zou, Metal–organic framework-based materials for hybrid supercapacitor application. Coord. Chem. Rev. 404, 213093 (2020).

    Article  CAS  Google Scholar 

  9. G. Li, R. Li, and W. Zhou, A wire-shaped supercapacitor in micrometer size based on Fe3O4 nanosheet arrays on Fe wire. Nano-Micro Lett. 9, 1 (2017).

    Article  Google Scholar 

  10. L. Li, Y. Liu, Y. Han, X. Qi, X. Li, H. Fan, and L. Meng, Metal–organic framework-derived carbon coated copper sulfide nanocomposites as a battery-type electrode for electrochemical capacitors. Mater. Lett. 236, 131 (2019).

    Article  CAS  Google Scholar 

  11. Y. Yetri, A.T. Hoang, D.D. Mursida, E.T. Muldarisnur, and M.Q. Chau, Synthesis of activated carbon monolith derived from cocoa pods for supercapacitor electrodes application. Energy Sources Part A (2020). https://doi.org/10.1080/15567036.2020.1811433.

    Article  Google Scholar 

  12. Y. Jiao, Y. Han, Y. Pang, J. Zhou, X. Qi, and Y. Liu, The plate-like hexagonal Ni-Fe-Sr layered double hydroxides as advanced electrodes for electrochemical energy storage. J. Electron. Mater. 49, 1043 (2020).

    Article  CAS  Google Scholar 

  13. K. Wang, B. Lv, Z. Wang, H. Wu, J. Xu, and Q. Zhang, Two-fold interpenetrated Mn-based metal–organic frameworks (MOFs) as battery-type electrode materials for charge storage. Dalton Trans. 49, 411 (2020).

    Article  CAS  Google Scholar 

  14. J. Maeng, Y.J. Kim, C. Meng, and P.P. Irazoqui, Three-dimensional microcavity array electrodes for high-capacitance all-solid-state flexible microsupercapacitors. ACS Appl. Mater. Interfaces 8, 13458 (2016).

    Article  CAS  Google Scholar 

  15. M. Ramezanzadeh, A. Tati, G. Bahlakeh, and B. Ramezanzadeh, Construction of an epoxy composite coating with exceptional thermo-mechanical properties using Zr-based NH2-UiO-66 metal–organic framework (MOF): experimental and DFT-D theoretical explorations. Chem. Eng. J. 408, 127366 (2021).

    Article  CAS  Google Scholar 

  16. F. Gao, J. Yang, X. Tu, Y. Yu, S. Liu, M. Li, Y. Gao, X. Wang, and L. Lu, Facile synthesis of ZIF-8@poly(3,4-ethylenedioxythiophene):poly (4-styrenesulfonate) and its application as efficient electrochemical sensor for the determination dichlorophenol. Synth. Met. 277, 116769 (2021).

    Article  CAS  Google Scholar 

  17. B. Wang, S. Liu, L. Liu, W.W. Song, Y. Zhang, S.M. Wang, and Z.B. Han, MOF/PEDOT/HPMo-based polycomponent hierarchical hollow micro-vesicles for high performance flexible supercapacitors. J. Mater. Chem. A 9, 2948 (2021).

    Article  CAS  Google Scholar 

  18. C. Liang, J. He, Y. Zhang, W. Zhang, C. Liu, X. Ma, Y. Liu, and J. Gu, MOF-derived CoNi@C-silver nanowires/cellulose nanofiber composite papers with excellent thermal management capability for outstanding electromagnetic interference shielding. Compos. Sci. Technol. 224, 109445 (2022).

    Article  CAS  Google Scholar 

  19. Y. Han, J. Zhou, L. Wang, Z. Xue, Y. Jiao, and Y. Pang, Redox-active nanostructure electrode of Mn/Ni bimetal organic frameworks anchoring on multi-walled carbon nanotubes for advanced supercapacitor. J. Electroanal .Chem. 882, 114993 (2021).

    Article  CAS  Google Scholar 

  20. M. Abdollahzadeh, M. Chai, E. Hosseini, M. Zakertabrizi, M. Mohammad, H. Ahmadi, J. Hou, S. Lim, A. Habibnejad Korayem, V. Chen, M. Asadnia, and A. Razmjou, Designing angstrom-scale asymmetric MOF-on-MOF cavities for high monovalent ion selectivity. Adv. Mater. 34, 1 (2022).

    Article  Google Scholar 

  21. M. Lu, G. Wang, X. Yang, and B. Hou, In situ growth CNT@MOFs core–shell structures enabling high specific supercapacitances in neutral aqueous electrolyte. Nano Res. 15, 6112 (2022).

    Article  CAS  Google Scholar 

  22. Y. Zhao, N. Hou, Y. Wang, C. Fu, X. Li, L. Li, and W. Zhang, All-fiber structure covered with two-dimensional conductive MOF materials to construct a comfortable, breathable and high-quality self-powered wearable sensor system. J. Mater. Chem. A 10, 1248 (2022).

    Article  CAS  Google Scholar 

  23. S. Zhou, X. Kong, B. Zheng, F. Hou, M. Strømme, and C. Xu, Cellulose nanofiber@ conductive metal–organic frameworks for high-performance flexible supercapacitors. ACS Nano 13, 9578 (2019).

    Article  CAS  Google Scholar 

  24. B. Dhara, S.S. Nagarkar, J. Kumar, V. Kumar, P.K. Jha, S.K. Ghosh, S. Nair, and N. Ballav, Increase in electrical conductivity of MOF to billion-fold upon filling the nanochannels with conducting polymer. J. Phys. Chem. Lett. 7, 2945 (2016).

    Article  CAS  Google Scholar 

  25. T. Wang, M. Farajollahi, S. Henke, T. Zhu, S.R. Bajpe, S. Sun, J.S. Barnard, J.S. Lee, J.D.W. Madden, A.K. Cheetham, and S.K. Smoukov, Functional conductive nanomaterials via polymerisation in nano-channels: PEDOT in a MOF. Mater. Horiz. 4, 64 (2017).

    Article  CAS  Google Scholar 

  26. A. Nishijima, Y. Kametani, and T. Uemura, Reciprocal regulation between MOFs and polymers. Coord. Chem. Rev. 466, 214601 (2022).

    Article  CAS  Google Scholar 

  27. A. Abutaha, P. Kumar, E. Yildirim, W. Shi, S. Yang, G. Wu, and K. Hippalgaonkar, Correlating charge and thermoelectric transport to paracrystallinity in conducting polymers. Nat. Commun. 11, 1737 (2020).

    Article  CAS  Google Scholar 

  28. Y. Wu, Y. Yang, C. Li, Y. Li, and W. Chen, Flexible and electroactive textile actuator enabled by PEDOT:PSS/MOF-derivative electrode ink. Front. Bioeng. Biotechnol. 8, 212 (2020).

    Article  Google Scholar 

  29. B. Wang, S. Liu, L. Lin, W. Song, Y. Zhang, S. Wang, and Z. Han, MOF/PEDOT/HPMo-based polycomponent hierarchical hollow micro-vesicles for high performance flexible supercapacitors. J. Mater. Chem. A 9, 2948 (2021).

    Article  CAS  Google Scholar 

  30. M.S. Rahmanifar, H. Hesari, A. Noori, M.Y. Masoomi, A. Morsali, and M.F. Mousavi, A dual Ni/Co-MOF-reduced graphene oxide nanocomposite as a high performance supercapacitor electrode material. Electrochim. Acta. 275, 76 (2018).

    Article  CAS  Google Scholar 

  31. A. Kundu, A. Samanta, and C.R. Raj, Hierarchical hollow MOF-derived bamboo-like N-doped carbon nanotube-encapsulated Co0.25Ni0.75 alloy: an efficient bifunctional oxygen electrocatalyst for zinc-air battery. ACS Appl. Mater. Interfaces 13, 30486 (2021).

    Article  CAS  Google Scholar 

  32. P.Y. Liu, J.J. Zhao, Z.P. Dong, Z.L. Liu, and Y.Q. Wang, Interwoving polyaniline and a metal-organic framework grown in situ for enhanced supercapacitor behavior. J. Alloys Compd. 854, 157181 (2021).

    Article  CAS  Google Scholar 

  33. Y. Du, G. Li, L. Ye, C. Che, X. Yang, and L. Zhao, Sandwich-like Ni-Zn hydroxide nanosheets vertically aligned on reduced graphene oxide via MOF templates towards boosting supercapacitive performance. Chem. Eng. J. 417, 129189 (2021).

    Article  CAS  Google Scholar 

  34. C. Yang, S. Yun, J. Shi, M. Sun, N. Zafar, A. Arshad, Y. Zhang, and L. Zhang, Tailoring the supercapacitive behaviors of Co/Zn-ZIF derived nanoporous carbon via incorporating transition metal species: a hybrid experimental-computational exploration. Chem. Eng. J. 419, 129636 (2021).

    Article  CAS  Google Scholar 

  35. H. Yu, H. Xia, J. Zhang, J. He, S. Guo, and Q. Xu, Fabrication of Fe-doped Co-MOF with mesoporous structure for the optimization of supercapacitor performances. Chin. Chem. Lett. 29, 834 (2018).

    Article  CAS  Google Scholar 

  36. C.C. Chueh, C.I. Chen, Y.A. Su, H. Konnerth, Y.J. Gu, C.W. Kung, and K.C.W. Wu, Harnessing MOF materials in photovoltaic devices: recent advances, challenges, and perspectives. J. Mater. Chem. A 7, 17079 (2019).

    Article  CAS  Google Scholar 

  37. D. Fu, H. Li, X.M. Zhang, G. Han, H. Zhou, and Y. Chang, Flexible solid-state supercapacitor fabricated by metal–organic framework/graphene oxide hybrid interconnected with PEDOT. Mater. Chem. Phys. 179, 166 (2016).

    Article  CAS  Google Scholar 

  38. V. Shrivastav, S. Sundriyal, A. Kaur, U.K. Tiwari, S. Mishra, and A. Deep, Conductive and porous ZIF-67/PEDOT hybrid composite as superior electrode for all-solid-state symmetrical supercapacitors. J. Alloys Compd. 843, 155992 (2020).

    Article  CAS  Google Scholar 

  39. C. Gao, S. Liu, L. Xie, Y. Ren, J. Cao, and C. Sun, Design and construction of a microporous metal–organic framework based on the pillared-layer motif. CrystEngComm 9, 545 (2007).

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work is supported by National Key R&D Program of China (2022YFE0209500), and the National Natural Science Foundation of China (21976177, 22276191) .

Funding

National Key R& D Program of China, 2022YFE0209500, YUANXUN ZHANG, National Natural Science Foundation of China, 21976177, XIN ZHANG, 22276191, XIN ZHANG.

Author information

Authors and Affiliations

Authors

Contributions

Writing—original draft and investigation, WJ; supervision, YH; conceptualization XY; validation YX; writing—review LW and XZ; grammar-modify XQ and YZ; funding acquisition YZ.

Corresponding author

Correspondence to Yinghui Han.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 179 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jiang, W., Han, Y., Yu, X. et al. PEDOT: PSS for Reinforced Performances of Co/Ni-MOF as Flexible Supercapacitor Electrodes. J. Electron. Mater. 52, 5543–5553 (2023). https://doi.org/10.1007/s11664-023-10507-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-023-10507-6

Keywords

Navigation