Skip to main content
Log in

Thiophosgene Detection by Ag-Decorated AlN Nanotube: A Mechanical Quantum Survey

  • Original Research Article
  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

A Correction to this article was published on 13 June 2023

This article has been updated

Abstract

The density functional B3LYP is used to investigate the effect of decorating the silver (Ag) atom on the sensing capability of an AlN nanotube (AlN-NT) in detecting thiophosgene (TP). There is a weak interaction between the pristine AlN-NT and TP with the sensing response (SR) of approximately 9.4. Decoration of the Ag atom into the structure of AlN-NT causes the adsorption energy of TP to decrease from − 6.2 to − 22.5 kcal/mol. Also, the corresponding SR increases significantly to 100.5. Moreover, the recovery time when TP is desorbed from the surface of the Ag-decorated AlN-NT (Ag@AlN-NT) is short, i.e., 24.9 s. The results show that Ag@AlN-NT can selectively detect TP among other gases, such as N2, O2, CO2, CO, and H2O.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Availability of Data and Material

All data will be available if required.

Code Availability

Not applicable.

Change history

References

  1. E. Berrios, H.Y. Hui, and M. Gruebele, Vibrationally resolved emission of thiophosgene dimer. Chem. Phys. Lett. 497, 163 (2010).

    Article  CAS  Google Scholar 

  2. Ó. López, E. Zafra, I. Maya, J. Fuentes, M.J. Diánez, M.D. Estrada, S. Pérez-Garrido, and J.G. Fernández-Bolaños, cis-Fused bicyclic sugar thiocarbamates. Reactivity towards amines. Tetrahedron 64, 11789 (2008).

    Article  Google Scholar 

  3. W. Weber, H. Chirowodza, and H. Pasch, 2,2,4,4-Tetrathio substituted 1,3-dithietanes. Tetrahedron 69, 2017 (2013).

    Article  CAS  Google Scholar 

  4. H. Zhang and D.M. Rudkevich, A FRET approach to phosgene detection. Chem. Commun. 12, 1238 (2007).

    Article  Google Scholar 

  5. Z. Wang, L. Dai, J. Yao, T. Guo, D. Hrynsphan, S. Tatsiana, and J. Chen, Enhanced adsorption and reduction performance of nitrate by Fe–Pd–Fe3O4 embedded multi-walled carbon nanotubes. Chemosphere, 281, 130718 (2021). https://doi.org/10.1016/j.chemosphere.2021.130718

    Article  CAS  Google Scholar 

  6. X. Wang, H. Feng, T. Chen, S. Zhao, J. Zhang, and X. Zhang, Gas sensor technologies and mathematical modelling for quality sensing in fruit and vegetable cold chains: a review. Trends Food Sci. Technol. 110, 483–492 (2021). https://doi.org/10.1016/j.tifs.2021.01.073

    Article  CAS  Google Scholar 

  7. J. Liu, Q. Zhang, X. Tian, Y. Hong, Y. Nie, N. Su, G. Jin, Z. Zhai, and C. Fu, Highly efficient photocatalytic degradation of oil pollutants by oxygen deficient SnO2 quantum dots for water remediation. Chem. Eng. J. 404, 127146 (2021). https://doi.org/10.1016/j.cej.2020.127146.

    Article  CAS  Google Scholar 

  8. Y. Liu, B. Li, X. Lei, S. Liu, H. Zhu, E. Ding, and P. Ning, Novel method for high-performance simultaneous removal of NOx and SO2 by coupling yellow phosphorus emulsion with red mud. Chem. Eng. J. 428, 131991 (2022). https://doi.org/10.1016/j.cej.2021.131991.

    Article  CAS  Google Scholar 

  9. Y. Wang, C. Li, Y. Zhang, M. Yang, B. Li, L. Dong, and J. Wang, Processing characteristics of vegetable oil-based nanofluid MQL for grinding different workpiece materials. Int. J. Precis. Eng. Manuf. - Green Technol. 5, 327 (2018). https://doi.org/10.1007/s40684-018-0035-4.

    Article  CAS  Google Scholar 

  10. Q. Zhao, J. Liu, H. Yang, H. Liu, G. Zeng, B. Huang, and J. Jia, Double U-groove temperature and refractive index photonic crystal fiber sensor based on surface plasmon resonance. Appl. Opt. 61, 7225 (2022). https://doi.org/10.1364/AO.462829.

    Article  CAS  Google Scholar 

  11. S. Li, M. Zhao, J. Xue, and R. Zhao, Effects of edge type and reconstruction on the electronic properties and magnetism of 1T′-ReS2 nanoribbons: a study based on DFT calculations. J. Magn. Magn. Mater. 567, 170351 (2023). https://doi.org/10.1016/j.jmmm.2022.170351.

    Article  CAS  Google Scholar 

  12. R. Ren, F. Lai, X. Lang, L. Li, C. Yao, and K. Cai, Efficient sulfur host based on Sn doping to construct Fe2O3 nanospheres with high active interface structure for lithium-sulfur batteries. Appl. Surf. Sci. 613, 156003 (2023). https://doi.org/10.1016/j.apsusc.2022.156003.

    Article  CAS  Google Scholar 

  13. A. Yan, Z. Li, J. Cui, Z. Huang, T. Ni, P. Girard, and X. Wen, Designs of two quadruple-node-upset self-recoverable latches for highly robust computing in harsh radiation environments. IEEE Trans. Aerosp. Electron. Syst. (2022). https://doi.org/10.1109/TAES.2022.3219372.

    Article  Google Scholar 

  14. Y. Peng, C. Shi, Y. Zhu, M. Gu, and S. Zhuang, Terahertz spectroscopy in biomedical field—a review on signal-to-noise ratio improvement. PhotoniX. 1, 1 (2020). https://doi.org/10.1186/s43074-020-00011-z.

    Article  Google Scholar 

  15. X. Fan, G. Wei, X. Lin, X. Wang, Z. Si, X. Zhang, Q. Shao, S. Mangin, E. Fullerton, and L. Jiang, Reversible switching of interlayer exchange coupling through atomically thin VO2 via electronic state modulation. Matter 2, 1582 (2020). https://doi.org/10.1016/j.matt.2020.04.001.

    Article  Google Scholar 

  16. K.D. Xu, Y.J. Guo, Y. Liu, X. Deng, Q. Chen, and Z. Ma, 60-GHz compact dual-mode on-chip bandpass filter using GaAs technology. IEEE Electron Device Lett. 42, 1120 (2021). https://doi.org/10.1109/LED.2021.3091277.

    Article  CAS  Google Scholar 

  17. Y. Wei, C. Chen, C. Tan, L. He, Z. Ren, C. Zhang, S. Peng, J. Han, H. Zhou, and J. Wang, High-performance visible to near-infrared broadband Bi2O2Se nanoribbon photodetectors. Adv. Opt. Mater. 10, 2201396 (2022). https://doi.org/10.1002/adom.202201396.

    Article  CAS  Google Scholar 

  18. A. Soltani, A.A. Peyghan, and Z. Bagheri, H2O2 adsorption on the BN and SiC nanotubes: a DFT study. Phys. E: Low-Dimens. Syst. Nanostruct. 48, 176 (2013).

    Article  CAS  Google Scholar 

  19. J. Beheshtian, Z. Bagheri, M. Kamfiroozi, and A. Ahmadi, Toxic CO detection by B12N12 nanocluster. Microelectron. Eng. 42, 1400 (2011).

    Article  CAS  Google Scholar 

  20. J. Beheshtian, A.A. Peyghan, and Z. Bagheri, Selective function of Al12N12 nano-cage towards NO and CO molecules. Comput. Mater. Sci. 62, 71 (2012).

    Article  CAS  Google Scholar 

  21. A. Ahmadi, J. Beheshtian, and N.L. Hadipour, Interaction of NH3 with aluminum nitride nanotube: electrostatic versus covalent. Phys. E: Low-Dimens. Syst. Nanostruct. 43, 1717 (2011).

    Article  CAS  Google Scholar 

  22. J. Beheshtian, A.A. Peyghan, and Z. Bagheri, Adsorption and dissociation of Cl2 molecule on ZnO nanocluster. Appl. Surf. Sci. 258, 8171 (2012).

    Article  CAS  Google Scholar 

  23. H. Li, Y. Zhang, C. Li, Z. Zhou, X. Nie, Y. Chen, H. Cao, B. Liu, N. Zhang, Z. Said, S. Debnath, M. Jamil, H.M. Ali, and S. Sharma, Cutting fluid corrosion inhibitors from inorganic to organic: progress and applications. Korean J. Chem. Eng. 39, 1107 (2022). https://doi.org/10.1007/s11814-021-1057-0.

    Article  CAS  Google Scholar 

  24. A.I. Ayesh, The effect of doping MoSe2 by clusters of noble metals on its adsorption for NH3. Phys. Lett. A. 441, 128163 (2022).

    Article  CAS  Google Scholar 

  25. M. Zhao, Y. Xia, D. Zhang, and L. Mei, Stability and electronic structure of AlN nanotubes. Phys. Rev. B. 68, 235415 (2003).

    Article  Google Scholar 

  26. M. Noei, H. Soleymanabadi, and A.A. Peyghan, Aluminum nitride nanotubes. Chem. Pap. 71, 881 (2017).

    Article  CAS  Google Scholar 

  27. S. Rafique, A.K. Kasi, J.K. Kasi, M. Bokhari, and Z. Shakoor, Fabrication of Br doped ZnO nanosheets piezoelectric nanogenerator for pressure and position sensing applications. Curr. Appl. Phys. 21, 72 (2021).

    Article  Google Scholar 

  28. M. Samadizadeh, S.F. Rastegar, and A.A. Peyghan, F, Cl, Li+ and Na+ adsorption on AlN nanotube surface: a DFT study. Phys. E: Low-Dimens. Syst. Nanostruct. 69, 75 (2015).

    Article  CAS  Google Scholar 

  29. Z. Bagheri and A.A. Peyghan, DFT study of NO2 adsorption on the AlN nanocones. Comput. Theor. Chem. 1008, 20 (2013).

    Article  CAS  Google Scholar 

  30. J. Beheshtian, M.T. Baei, A.A. Peyghan, and Z. Bagheri, Nitrous oxide adsorption on pristine and Si-doped AlN nanotubes. J. Mol. Model. 19, 943 (2013).

    Article  CAS  Google Scholar 

  31. T. Ouyang, Z. Qian, X. Hao, R. Ahuja, and X. Liu, Effect of defects on adsorption characteristics of AlN monolayer towards SO2 and NO2: ab initio exposure. Appl. Surf. Sci. 462, 615 (2018).

    Article  CAS  Google Scholar 

  32. C. Kamble, M. Panse, and A. Nimbalkar, Ag decorated WO3 sensor for the detection of sub-ppm level NO2 concentration in air. Mater. Sci. Semicond. Process. 103, 104613 (2019).

    Article  CAS  Google Scholar 

  33. M.T. Baei, A.A. Peyghan, and Z. Bagheri, Fluorination of the exterior surface of AlN nanotube: a DFT study. Superlattices Microstruct. 53, 9 (2012).

    Article  Google Scholar 

  34. Z. Yuan, J. Zhang, F. Meng, Y. Li, R. Li, Y. Chang, J. Zhao, E. Han, and S. Wang, Highly sensitive ammonia sensors based on Ag-decorated WO3 nanorods. IEEE Trans. Nanotechnol. 17, 1252 (2018).

    Article  CAS  Google Scholar 

  35. H. Liu, W. Shen, and X. Chen, A room temperature operated ammonia gas sensor based on Ag-decorated TiO2 quantum dot clusters. RSC Adv. 9, 24519 (2019).

    Article  CAS  Google Scholar 

  36. X. Xu, Y. Chen, G. Zhang, S. Ma, Y. Lu, H. Bian, and Q. Chen, Highly sensitive VOCs-acetone sensor based on Ag-decorated SnO2 hollow nanofibers. J. Alloys Compd. 703, 572 (2017).

    Article  CAS  Google Scholar 

  37. M.W. Schmidt, K.K. Baldridge, J.A. Boatz, S.T. Elbert, M.S. Gordon, J.H. Jensen, S. Koseki, N. Matsunaga, K.A. Nguyen, S. Su, T.L. Windus, M. Dupuis, and J.A. Montgomery, General atomic and molecular electronic structure system. J. Comput. Chem. 14, 1347 (1993).

    Article  CAS  Google Scholar 

  38. L.A. Burns, Á.V. Mayagoitia, B.G. Sumpter, and C.D. Sherrill, Density-functional approaches to noncovalent interactions: a comparison of dispersion corrections (DFT-D), exchange-hole dipole moment (XDM) theory, and specialized functionals. J. Chem. Phys. 134, 084107 (2011).

    Article  Google Scholar 

  39. S. Grimme, Density functional theory with London dispersion corrections. Wiley Interdiscip. Rev. Comput. Mol. Sci. 1, 211 (2011).

    Article  CAS  Google Scholar 

  40. N. O’Boyle, A. Tenderholt, and K. Langner, cclib: a library for package-independent computational chemistry algorithms. J. Comput. Chem. 29, 839 (2008).

    Article  Google Scholar 

  41. S.F. Boys and F. Bernardi, The calculation of small molecular interactions by the differences of separate total energies. Some procedures with reduced errors. Mol. Phys. 19, 553 (1970).

    Article  CAS  Google Scholar 

  42. M. Noei, M. Ebrahimikia, Y. Saghapour, M. Khodaverdi, A.A. Salari, and N. Ahmadaghaei, Removal of ethyl acetylene toxic gas from environmental systems using AlN nanotube. J. Nanostruct. Chem. 5, 213 (2015).

    Article  CAS  Google Scholar 

  43. J. Beheshtian, A.A. Peyghan, and Z. Bagheri, A first-principles study of H2S adsorption and dissociation on the AlN nanotube. Phys. E: Low-Dimens. Syst. Nanostruct. 44, 1963 (2012).

    Article  CAS  Google Scholar 

  44. H. Anaraki-Ardakani, A computational study on the application of AlN nanotubes in Li-ion batteries. Phys. Lett. A 381, 1041 (2017).

    Article  CAS  Google Scholar 

  45. N. Yamazoe and K. Shimanoe, New perspectives of gas sensor technology. Sens. Actuators B Chem. 138, 100 (2009).

    Article  CAS  Google Scholar 

  46. A. Bano, J. Krishna, D.K. Pandey, and N. GPtr, An ab initio study of sensing applications of MoB2 monolayer: a potential gas sensor. Phys. Chem. Chem. Phys. 21, 4633 (2019).

    Article  CAS  Google Scholar 

  47. Y. Cao, A.F. Vahid, F.S. Sadeghzadeh, H. Soleimanpour, S. Ahmadi, and M.R.P. Heravi, A DFT study on the Ag-decorated AlP nanosheets as chemical sensor for recognition of adrucil drug. Comput. Theor. Chem. 1206, 113484 (2021).

    Article  CAS  Google Scholar 

  48. Y. Qu, J. Ding, H. Fu, J. Peng, and H. Chen, Adsorption of CO, NO, and NH3 on ZnO monolayer decorated with noble metal (Ag, Au). Appl. Surf. Sci. 508, 145202 (2020).

    Article  CAS  Google Scholar 

  49. Z. Liu, X.-R. Cheng, Y.-M. Yang, H.-Z. Jia, B.-Q. Bai, and L. Zhao, DFT study of N2O adsorption onto the surface of M-decorated graphene oxide (M = Mg, Cu or Ag). Materials 12, 2611 (2019).

    Article  CAS  Google Scholar 

Download references

Funding

Not applicable.

Author information

Authors and Affiliations

Authors

Contributions

Not applicable.

Corresponding authors

Correspondence to Mohanad Hatem Shadhar or Mustafa M. Kadhim.

Ethics declarations

Conflict of interest

There is no conflict of interest.

Ethics Approval

We approved all Ethics.

Consent to Participate

Not applicable.

Consent for Publication

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The original online version of this article was revised: Haider Abdulkareem Almashhadani’s affiliation was corrected.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ghani, H.A., Bustani, G.S., Shadhar, M.H. et al. Thiophosgene Detection by Ag-Decorated AlN Nanotube: A Mechanical Quantum Survey. J. Electron. Mater. 52, 5670–5679 (2023). https://doi.org/10.1007/s11664-023-10483-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-023-10483-x

Keywords

Navigation