Skip to main content
Log in

Role of the Dopants in Improving the Piezoelectric Properties of Bi0.5Na0.5TiO3

  • Review Article
  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

Despite the high coercive field (Ec = 7.3 kV/mm) and the high conductivity (2.1 × 10–7 (Ωm)−1) of (Bi0.5Na0.5)TiO3 (BNT) ceramics, their microstructure and electric properties can be tailored by appropriate substitutions at the A and/or B-sites. In this paper, we offer a comprehensive review of the up-to-date advances on doped lead-free BNT ceramics, highlighting the role of the nature and concentration of dopants on the stoichiometry, microstructure, density, dielectric properties, and piezoelectric properties of the solid solutions obtained after doping. For each composition presented in this review, the synthesis method and the sintering technique of the ceramics are also given because of the well-known connection between powder processing (its morphology), ceramics densification (its density), and the macroscopic properties of the final product. A substitution mechanism for each dopant that explains the role of the dopant on the structure and electrical properties of the BNT matrix is also described in detail. Our review provides knowledge for the development of new solid solutions of BNT.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. J.W. Waanders, Piezoelectric Ceramics-Properties, and applications (Eindhoven: Philips Components, 1991).

    Google Scholar 

  2. K. Nakamura and Y. Kawamura, Orientation dependence of electromechanical coupling factors in KNbO3. IEEE Trans. Ultrason. 47, 750 (2000).

    Article  CAS  Google Scholar 

  3. S. Wada, A. Seike, and T. Tsurumi, Poling treatment and piezoelectric properties of potassium niobate ferroelectric single crystals. Jpn. J. Appl. Phys. 40, 5690 (2001).

    Article  CAS  Google Scholar 

  4. K. Kakimoto, I. Musada, and H. Osato, Growth morphology and crystal orientation of KNbO3 film on SrTiO3 by liquid phase epitaxy. Jpn. J. Appl. Phys. 41, 6908 (2002).

    Article  CAS  Google Scholar 

  5. H. Wei, H. Wang, Y. Xia, D. Cui, Y. Shi, M. Dong, C. Liu, T. Ding, J. Zhang, Y. Ma et al., An overview of lead-free piezoelectric materials and devices. J. Mater. Chem. C 6, 12446 (2018).

    Article  CAS  Google Scholar 

  6. M. Li, W. Chen, Q. Xu, J. Zhou, H.J. Sun, and R. Xu, Dielectric and piezoelectric properties of lead-free (Na0.5Bi0.5)TiO3NaNbO3 ceramics. Mater. Sci. Eng. B 112, 5 (2004).

    Article  Google Scholar 

  7. Y.Q. Lu and Y.X. Li, A review on leadfree piezoelectric ceramics studies in China. J. Adv. Dielectr. 1, 269 (2011).

    Article  CAS  Google Scholar 

  8. A. Nesterović, J. Vukmirović, I. Stijepović, M. Milanović, B. Bajac, E. Tóth, Z. Cvejić, and V.V. Srdić, Structure and dielectric properties of (1–x)Bi0.5Na0.5TiO3-xBaTiO3 piezoceramics prepared using hydrothermally synthesized powders. R. Soc. Open Sci 8, 202365 (2022).

    Article  Google Scholar 

  9. G.O. Jones and P.A. Thomas, Structural science investigation of the structure and phase transitions in the novel A-site substituted distorted perovskite compound Bi0.5Na0.5TiO3. Acta Crystallogr. Sect. B 58, 168 (2002).

    Article  CAS  Google Scholar 

  10. J. Han, J. Yin, and J. Wu, (Bi0.5Na0.5)TiO3 ferroelectric ceramics: achieving high depolarization temperature and improved piezoelectric properties. J. Eur. Ceram. Soc. 40, 5392 (2020).

    Article  CAS  Google Scholar 

  11. J. Rödel, W. Jo, K.T.P. Seifert, E.M. Anton, T. Granzow, and D. Damjanovic, Perspective on the development of lead-free piezoceramics. J. Am. Ceram. Soc. 92, 1153 (2009).

    Article  Google Scholar 

  12. Y. Hiruma, H. Nagata, and T. Takenaka, Thermal depoling process and piezoelectric properties of bismuth sodium titanate ceramics. J. Appl. Phys. 105, 084112 (2009).

    Article  Google Scholar 

  13. K.A. Razak, C.J. Yip, and S. Sreekantan, Synthesis of (Bi0.5Na0.5)TiO3 (BNT) and Pr doped BNT using the soft combustion technique and its properties. J. Alloys Compd. 509, 2936 (2011).

    Article  Google Scholar 

  14. Y.C. Lee, T.K. Lee, and J.H. Jan, Piezoelectric properties and microstructures of ZnO-doped Bi0.5Na0.5TiO3 ceramics. J. Eur. Ceram. Soc. 31, 3145 (2011).

    Article  CAS  Google Scholar 

  15. A. Ullah, C.W. Ahn, A. Hussain, and I.W. Kim, The effects of sintering temperatures on dielectric, ferroelectric and electric field-induced strain of lead-free Bi0.5(Na0.78K0.22)0.5TiO3 piezoelectric ceramics synthesized by the sol–gel technique. Curr. Appl. Phys. 10, 1367 (2010).

    Article  Google Scholar 

  16. N. Petnoi, P. Bomlai, S. Jiansirisomboon, and A. Watcharapasorn, Effects of Nb-doping on the micro-structure and dielectric properties of (Bi0.5Na0.5)TiO3 ceramics. Ceram. Int. 39, S113 (2013).

    Article  CAS  Google Scholar 

  17. J.Y. Yi, J.K. Lee, and K.S. Hong, Dependence of the microstructure and the electrical properties of lanthanum-substituted (Bi0.5Na0.5)TiO3 on cation vacancies. J. Am. Ceram. Soc. 85, 3004 (2002).

    Article  CAS  Google Scholar 

  18. G.V. Lewis, C.R.A. Catlow, and R.E.W. Casselton, PTCR effect in BaTiO3. J. Am. Ceram. Soc. 68, 555 (1985).

    Article  CAS  Google Scholar 

  19. P.G.R. Lucuta, F.L. Constantinescu, and D. Barb, Structure dependence on sintering temperature of lead zirconate-titanate solid solution. J. Am. Ceram. Soc. 68, 533 (1985).

    Article  CAS  Google Scholar 

  20. J.R. Esquivel-Elizondo, B.B. Hinojosa, and J.C. Nino, Bi2Ti2O7: it is not what you have read. Chem. Mater. 23, 4965 (2011).

    Article  CAS  Google Scholar 

  21. R. Sahu and P. Kumar, Microstructure and electrical properties of microwave sintered Nb-doped NBT ceramics. Process. Appl. Ceram. 15, 395 (2021).

    Article  CAS  Google Scholar 

  22. R. Zuo, H. Wang, B. Ma, and L. Li, Effects of Nb doping on sintering and electrical properties of lead-free (Bi0.5Na0.5)TiO3 ceramics. J. Mater. Sci. Mater. Electron. 20, 1140 (2009).

    Article  CAS  Google Scholar 

  23. A. Herabut and A. Safari, Processing and electromechanical properties of (Bi0.5Na0.5)(1–1.5x)LaxTiO3 ceramics. J. Am. Ceram. Soc. 80, 2954 (1997).

    Article  CAS  Google Scholar 

  24. H. Nagata and T. Takenaka, Additive effects on electrical properties of (Bi0.5Na0.5)TiO3 ferroelectric ceramics. J. Eur. Ceram. Soc. 21, 1299 (2001).

    Article  CAS  Google Scholar 

  25. F. Han, J. Deng, X. Liu, T. Yan, S. Ren, X. Ma, S. Liu, B. Peng, and L. Liu, High-temperature dielectric and relaxation behavior of Yb-doped Bi0.5Na0.5TiO3 ceramics. Ceram. Int. 43, 5564 (2017).

    Article  CAS  Google Scholar 

  26. P. Du, L. Luo, W. Li, Y. Zhang, and H. Chen, Electrical and luminescence properties of Er-doped Bi0.5Na0.5TiO3 ceramics. Mater. Sci. Eng. B 178, 1219 (2013).

    Article  CAS  Google Scholar 

  27. A. Watcharapasorn and S. Jiansirisomboon, Grain growth kinetics in Dy-doped Bi0.5Na0.5TiO3 ceramics. Ceram. Int. 34, 769 (2008).

    Article  CAS  Google Scholar 

  28. K.A. Razak, W.C. Song, and C.Y. Ng, Properties of Ce-doped Bi0.5Na0.5TiO3 synthesized using the soft combustion method. Procedia Chem. 19, 816 (2016).

    Article  Google Scholar 

  29. S. Buntham, P. Boonsong, P. Jaiban, N. Keawprak, and A. Watcharapasorn, Effects of cobalt dopant on microstructure and electrical properties of Bi0.5Na0.5TiO3 ceramics. Chiang Mai J. Sci. 45, 2481 (2018).

    CAS  Google Scholar 

  30. T. Karthik, R. Ranjith, and A. Saket, Evidence for the suppression of intermediate anti-ferroelectric ordering and observation of hardening mechanism in Na1/2Bi1/2TiO3 ceramics through cobalt substitution. AIP Adv. 4, 017111 (2014).

    Article  Google Scholar 

  31. A. Watcharapasorn, S. Jiansirisomboon, and T. Tunkasiri, Sintering of Fe-doped Bi0.5Na0.5TiO3 at < 1000°C. Mater. Lett. 61, 2986 (2007).

    Article  CAS  Google Scholar 

  32. K.N. Singh, V. Sao, P. Tamrakar, S. Soni, V.K. Dubey, and P.K. Bajpai, Structural and Raman spectroscopic study of antimony doped Bi0.5Na0.5TiO3 Electroceramic. J. Mater. Sci. Chem. Eng. 3, 43 (2015).

    Google Scholar 

  33. M. Lun, W. Wang, and Z. Xing, Luminescence and electrical properties of Eu-modified Bi0.5Na0.5TiO3 multifunctional ceramics. J. Am. Ceram. Soc. 102, 5243 (2019).

    Article  CAS  Google Scholar 

  34. W. Krauss, D. Schütz, F.A. Mautner, A. Feteira, and K. Reichmann, Piezoelectric properties and phase transition temperatures of the solid solution of (1–x)Bi0.5Na0.5TiO3-xSrTiO3. J. Eur. Ceram. Soc. 30, 827 (2010).

    Article  Google Scholar 

  35. Y. Hiruma, Y. Imai, Y. Watanabe, H. Nagata, and T. Takenaka, Large electrostrain near the phase transition temperature of (Bi0.5Na0.5)TiO3-SrTiO3 ferroelectric ceramics. Appl. Phys. Lett. 92, 262904 (2008).

    Article  Google Scholar 

  36. L. Luo, B. Wang, X. Jiang, and W. Li, Energy storage properties of (1–x)(Bi0.5Na0.5)TiO3–xKNbO3 lead-free ceramics. J. Mater. Sci. 49, 1659 (2014).

    Article  CAS  Google Scholar 

  37. L. Liu, Z. Yang, M. Wu, L. Fang, and C. Hu, Dielectric properties of (NaBi(1–x)Kx)0.5Ti(1–x)NbxO3 ceramics fabricated by mechanical alloying. J. Alloy Compd. 507, 196 (2010).

    Article  CAS  Google Scholar 

  38. K.N. Singh and P.K. Bajpai, Ferroelectric relaxor behavior and dielectric spectroscopic study of 0.99(Bi0.5Na0.5TiO3)-0.01(SrNb2O6) solid solution. J. Alloys Compd. 509, 5070 (2011).

    Article  CAS  Google Scholar 

  39. Q. Xu, S.T. Chen, W. Chen, S.J. Wu, J. Zhou, H.J. Sun, and Y.M. Li, Synthesis and piezoelectric and ferroelectric properties of (Na0.5Bi0.5)1−xBaxTiO3 ceramics. Mater. Chem. Phys. 90, 111 (2005).

    Article  CAS  Google Scholar 

  40. W.C. Lee, C.Y. Huang, L.K. Tsao, and Y.C. Wu, Chemical composition and tolerance factor at the morphotropic phase boundary in (Bi0.5Na0.5)TiO3-based piezoelectric ceramics. J. Eur. Ceram. Soc. 29, 1443 (2009).

    Article  CAS  Google Scholar 

  41. Y.M. Chiang, G.W. Farrey, and A.N. Soukhojak, Lead-free high-strain single-crystal piezoelectrics in the alkaline–bismuth–titanate perovskite family. Appl. Phys. Lett. 73, 3683 (1998).

    Article  CAS  Google Scholar 

  42. M. Chen, Q. Xu, B.H. Kim, B.K. Ahn, J.H. Ko, W.J. Kang, and O.J. Nam, Structure and electrical properties of (Na0.5Bi0.5)1−xBaxTiO3 piezoelectric ceramics. J. Eur. Ceram. Soc. 28, 843 (2008).

    Article  Google Scholar 

  43. Q. Xu, Y.H. Huang, M. Chen, W. Chen, B.H. Kim, and B.K. Ahn, Effect of bismuth deficiency on structure and electrical properties of (Na0.5Bi0.5)0.93Ba0.07TiO3 ceramics. J. Phys. Chem. Solids 69, 1996 (2008).

    Article  CAS  Google Scholar 

  44. B.J. Chu, D.R. Chen, G.R. Li, and Q.R. Yin, Electrical properties of (Na1/2Bi1/2)TiO3–BaTiO3 ceramics. J. Eur. Ceram. Soc. 22, 2115 (2002).

    Article  CAS  Google Scholar 

  45. M. Cernea, E. Andronescu, R. Radu, F. Fochi, and C. Galassi, Sol-gel synthesis and characterization of BaTiO3 doped-(Bi1/2Na1/2)TiO3 piezoelectric ceramics. J. Alloys Compd. 490, 690 (2010).

    Article  CAS  Google Scholar 

  46. H. Wang, R. Zuo, X. Ji, and Z. Xu, Effects of ball milling on microstructure and electrical properties of sol–gel derived (Na0.5Bi0.5)0.94Ba0.06TiO3 piezoelectric ceramics. Mater. Des. 31, 4403 (2010).

    Article  CAS  Google Scholar 

  47. T. Takenaka, K.I. Maruyama, and K. Sakata, (Bi1/2Na1/2)TiO3–BaTiO3 system for lead-free piezoelectric ceramics. Jpn. J. Appl. Phys. Part 1 30, 2236 (1991).

    Article  CAS  Google Scholar 

  48. P. Fu, Z. Xu, R. Chu, W. Li, G. Zang, and J. Hao, Piezoelectric, ferroelectric and dielectric properties of La2O3-doped (Bi0.5Na0.5)0.94Ba0.06TiO3 lead-free ceramics. Mater. Des. 31, 796 (2010).

    Article  CAS  Google Scholar 

  49. Z. Yang, Y. Hou, H. Pan, and Y. Chang, Structure, microstructure and electrical properties of (1-x-y)Bi0.5Na0.5TiO3–xBi0.5K0.5TiO3–yBi0.5Li0.5TiO3 lead-free piezoelectric ceramics. J. Alloys Compd. 480, 246 (2009).

    Article  CAS  Google Scholar 

  50. R.D. Shannon, Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallogr. A 32, 751 (1976).

    Article  Google Scholar 

  51. Y. Tsur, D.T. Dunbar, and C.A. Randall, Crystal and defect chemistry of rare earth cations in BaTiO3. J. Electroceram. 7, 25 (2001).

    Article  CAS  Google Scholar 

  52. Y.S. Teh, J. Li, and K. Bhattacharya, Understanding the morphotropic phase boundary of perovskite solid solutions as a frustrated state. Phys. Rev. B 103, 144201 (2021).

    Article  CAS  Google Scholar 

  53. Y. Yamashita, Large electromechanical coupling factors in perovskite binary material system. Jpn. J. Appl. Phys. 33, 5328 (1994).

    Article  CAS  Google Scholar 

  54. T. Yamamoto and S. Ohashi, Dielectric and piezoelectric properties of Pb(Yb1/2Nb1/2)O3-PbTiO3 solid solution system. Jpn. J. Appl. Phys. 34, 5349 (1995).

    Article  CAS  Google Scholar 

  55. B.W. Lee and E.J. Lee, Effects of complex doping on microstructural and electrical properties of PZT ceramics. J. Electroceram. 17, 597 (2006).

    Article  Google Scholar 

  56. M. Pereira, A.G. Peixoto, and M.J.M. Gomes, Effect of Nb doping on the microstructural and electrical properties of the PZT ceramics. J. Eur. Ceram. Soc. 21, 1353 (2001).

    Article  CAS  Google Scholar 

  57. W.W. Cao and L.E. Cross, Theoretical model for the morphotropic phase boundary in lead zirconate-lead titanate solid solution. Phys. Rev. B 47, 4825 (1993).

    Article  CAS  Google Scholar 

  58. C. Zhou, X. Liu, W. Li, and C. Yuan, Dielectric and piezoelectric properties of Bi0.5Na0.5TiO3–Bi0.5K0.5TiO3–BiCrO3 lead-free piezoelectric ceramics. J. Alloy Compd. 478, 381 (2009).

    Article  CAS  Google Scholar 

  59. M. Zou, H. Fan, L. Chen, and W. Yang, Microstructure and electrical properties of (1–x)[0.82Bi0.5Na0.5TiO3-0.18Bi0.5K0.5TiO3]–xBiFeO3 lead-free piezoelectric ceramics. J. Alloys Compd. 495, 280 (2010).

    Article  CAS  Google Scholar 

  60. M. Xu, F. Wang, T. Wang, X. Chen, Y. Tang, and W. Shi, Phase diagram and electric properties of the (Mn, K)-modified Bi0.5Na0.5TiO3-BaTiO3 lead-free ceramics. J. Mater. Sci. 46, 4675 (2011).

    Article  CAS  Google Scholar 

  61. J. Shieh, K.C. Wu, and C.S. Chen, Switching characteristics of MPB compositions of (Bi0.5Na0.5)TiO3-BaTiO3-(Bi0.5K0.5)TiO3 lead-free ferroelectric ceramics. Acta Mater. 55, 3081 (2007).

    Article  CAS  Google Scholar 

  62. X.X. Wang, S.H. Choy, X.G. Tang, and H.L.W. Chan, Dielectric behavior and microstructure of (Bi1/2Na1/2)TiO3-(Bi1/2K1/2)TiO3-BaTiO3 lead-free piezoelectric ceramics. J. Appl. Phys. 97, 104101 (2005).

    Article  Google Scholar 

  63. H. Nagata and T. Takenaka, Lead-free piezoelectric ceramics of Bi0.5Na0.5TiO3-1/2(Bi2O3·Sc2O3) system. Jpn. J. Appl. Phys. 36, 6055 (1997).

    Article  CAS  Google Scholar 

  64. H. Nagata and T. Takenaka, Lead-free piezoelectric ceramics of Bi0.5Na0.5TiO3-KNbO3-1/2(Bi2O3·Sc2O3) system. Jpn. J. Appl. Phys. 37, 5311 (1998).

    Article  CAS  Google Scholar 

  65. Q. Xu, M. Chen, W. Chen, H.X. Liu, B.H. Kim, and B.K. Ahn, Effect of CoO additive on structure and electrical properties of (Na0.5Bi0.5)0.93Ba0.07TiO3 ceramics prepared by the citrate method. Acta Mater. 56, 642 (2008).

    Article  CAS  Google Scholar 

  66. X.M. Chen, X.X. Gong, T.N. Li, Y. He, and P. Liu, Microstructure, dielectric and ferroelectric properties of (1–x)(0.94Bi0.5Na0.5TiO3-0.06BaTiO3)-xBiFeO3 lead-free ceramics synthesized via a high energy ball milling method. J. Alloys Compd. 507, 535 (2010).

    Article  CAS  Google Scholar 

  67. X.M. Chen, W.Y. Pan, H.H. Tian, X.X. Gong, X.B. Bian, and P. Liu, Microstructure, dielectric and ferroelectric properties of 0.94Bi0.5Na0.5TiO3-0.06BaTiO3 (NBTB) and 0.05BiFeO3-0.95NBTB ceramics: effect of sintering atmosphere. J. Alloy Compd. 509, 1824 (2011).

    Article  CAS  Google Scholar 

  68. X.X. Wang, X.G. Tang, and H.L.W. Chan, Electromechanical and ferroelectric properties of (Bi1∕2Na1∕2)TiO3-(Bi1∕2K1∕2)TiO3-BaTiO3 lead-free piezoelectric ceramics. Appl. Phys. Lett. 85, 91 (2004).

    Article  CAS  Google Scholar 

  69. C.Z. Zhihui, D.J. Ning, M. Lin, Y.N. Yi, and Z.Y. Yuan, Piezoelectric and dielectric properties of Dy2O3-doped (Bi0.5Na0.5)0.94Ba0.06TiO3 lead-free ceramics. J. Alloy Compd. 509, 482 (2011).

    Article  Google Scholar 

  70. X. Ma, J. Yin, Q. Zhou, L. Xuen, and Y. Yan, Effect of Eu doping on structure and electrical properties of lead-free (Bi0.5Na0.5)0.94Ba0.06TiO3 ceramics. Ceram. Int. 40, 7007–7013 (2014).

    Article  CAS  Google Scholar 

  71. J. Shi and W. Yang, Piezoelectric and dielectric properties of CeO2-doped (Na0.5Bi0.5)0.94Ba0.06TiO3 lead-free ceramics. J. Alloys Compd. 472, 267 (2009).

    Article  CAS  Google Scholar 

  72. P. Fu, Z. Xu, R. Chu, W. Li, G. Zang, and J. Hao, Piezoelectric, ferroelectric and dielectric properties of Nd2O3-doped (Bi0.5Na0.5)0.94Ba0.06TiO3 lead-free ceramics. Mater. Sci. Eng. B 167, 161 (2010).

    Article  CAS  Google Scholar 

  73. W.H. Han and J.H. Koh, Shrinkage mechanism and enhanced piezoelectric properties of Ta doped 0.94Bi0.5Na0.5TiO3-0.06BaTiO3 lead free ceramics. Ceram. Int. 44, 5352 (2018).

    Article  CAS  Google Scholar 

  74. R. Zuo, C. Ye, X. Fang, and J. Li, Tantalum doped 0.94Bi0.5Na0.5TiO3-0.06BaTiO3 piezoelectric ceramics. J. Eur. Ceram. Soc. 28, 871 (2008).

    Article  CAS  Google Scholar 

  75. P. Fu, Z. Xu, R. Chu, W. Li, G. Zang, and J. Hao, Piezoelectric, ferroelectric and dielectric properties of Sm2O3-doped (Bi0.5Na0.5)0.94Ba0.06TiO3 lead-free ceramics. Mater. Chem. Phys. 124, 1065 (2010).

    Article  CAS  Google Scholar 

  76. B. Hu, Z. Pan, M. Dai, F.F. Guo, H. Ning, Z.B. Gu, J. Chen, M.H. Lu, S.T. Zhang, B. Yang, and W. Cao, Photoluminescence and temperature dependent electrical properties of Er-doped (Bi0.5Na0.5)0.94Ba0.06TiO3 Ceramics. J. Am. Ceram. Soc. 97, 3877 (2014).

    Article  CAS  Google Scholar 

  77. Q. Li, H. Wang, H. Fan, C. Long, and X. Liu, Ferroelectric, electromechanical, and dielectric properties of (Na0.5Bi0.5)0.94Ba0.06TiO3 co-doped MnO2 and La2O3 lead-free ceramics. J. Mater. Sci. 49, 211 (2014).

    Article  CAS  Google Scholar 

  78. H.Y. Ma, X.M. Chen, J. Wang, K.T. Huo, H.L. Lian, and P. Liu, Structure, dielectric and ferroelectric properties of 0.92Bi0.5Na0.5TiO3-0.06BaTiO3-0.02K0.5Na0.5NbO3 lead-free ceramics: effect of Co2O3 additive. Ceram. Int. 39, 3721 (2013).

    Article  CAS  Google Scholar 

  79. Z. Chen and J. Hu, Piezoelectric and dielectric properties of (Bi0.5Na0.5)0.94Ba0.06TiO3-Ba(Zr0.04Ti0.96)O3 lead-free piezoelectric ceramics. Ceram. Int. 35, 111 (2009).

    Article  CAS  Google Scholar 

  80. J.G. Fisher and S.J.L. Kang, Microstructural changes in (K0.5Na0.5)NbO3 ceramics sintered in various atmospheres. J. Eur. Ceram. Soc. 29, 2581 (2009).

    Article  CAS  Google Scholar 

  81. S.W. Zhang, H.L. Zhang, B.P. Zhang, and G.L. Zhao, Dielectric and piezoelectric properties of (Ba0.95Ca0.05)(Ti0.88Zr0.12)O3 ceramics sintered in a protective atmosphere. J. Eur. Ceram. Soc. 29, 3235 (2009).

    Article  CAS  Google Scholar 

  82. H. Yang, G. Zhang, X. Chen, and H. Zhou, Observation of magnetoelectric coupling and the electrical properties in 0.65BaTiO3-0.35Bi0.5Na0.5TiO3/CoFe2O4 particulate. J. Mater. Sci.: Mater. Electron. 26, 6107 (2015).

    CAS  Google Scholar 

  83. M. Cernea, B.S. Vasile, I.V. Ciuchi, A. Iuga, E. Alexandrescu, J. Pintea, and C. Galassi, Synthesis, structural and electrical properties of BNT-BTCe@SiO2 core–shell heterostructure. Sci. Adv. Mater. 7, 2297 (2015).

    Article  CAS  Google Scholar 

  84. H. Si, Z. Zhang, Q. Liao, G. Zhang, Y. Ou, S. Zhang, H. Wu, J. Wu, Z. Kang, and Y. Zhang, A-site management for highly crystalline perovskites. Adv. Mater. 32, 1904702 (2020).

    Article  CAS  Google Scholar 

  85. Z. Han, S. Ullah, G. Zheng, H. Yin, J. Zhao, S. Cheng, X. Wang, and J. Yang, The thermal-to-electrical energy conversion in (Bi0.5Na0.5)0.94Ba0.06TiO3/graphene oxide heterogeneous structures. Ceram. Int. 45, 24493 (2019).

    Article  Google Scholar 

  86. J. Tang, J. Liu, and H. Huang, Dielectric, piezoelectric and ferroelectric properties of flexible 0–3 type PZT/PVDF composites doped with graphene. J. Electron. Mater. 48, 4033 (2019).

    Article  CAS  Google Scholar 

Download references

Acknowledgments

One of the authors (Dr. Kaouther Belgacem) is thankful to the Taif University Researches for supporting project number TURSP–2020/267, Taif University, Taif, Arabia Saudi.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marin Cernea.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Belgacem, K., Stanciu, C., Perju, S. et al. Role of the Dopants in Improving the Piezoelectric Properties of Bi0.5Na0.5TiO3. J. Electron. Mater. 52, 4455–4474 (2023). https://doi.org/10.1007/s11664-023-10407-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-023-10407-9

Keywords

Navigation