Skip to main content

Advertisement

Log in

Output Performance of a Road Energy Harvester Based on Piezoelectric Ceramic Recycling Technology

  • Original Research Article
  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

Watt-level road-vibration energy acquisition technology has wide application prospects because it can supply power to wireless low-power traffic-infrastructure sensors and solve power supply, wiring, and transmission difficulties. However, the depolarization and fragmentation of piezoelectric ceramics under long-term traffic loads leads to a significant decrease in their energy conversion efficiency. Hence, in this study, the PZT-5H piezoelectric ceramics used in road piezoelectric energy harvesters were recycled. An entire process was proposed for recycling piezoelectric ceramics. The experimental results show that the piezoelectric ceramics before and after recycling had a stable phase structure and excellent performance parameters. Under identical polarization conditions, the piezoelectric charge constant d33 of the recycled ceramics reached 75% of that of the initial ceramics. Subsequently, the output performance of the piezoelectric harvester unit was tested under different traffic loads. When the excitation displacement was 1 mm and the excitation frequency was 10 Hz, the maximum open-circuit voltage of the proposed piezoelectric harvester unit was 21.08 V, close to the 23.13 V of the initial ceramic harvester; furthermore, the power generation performance recovery reached 91.14%. In this study, a technological process for recycling piezoelectric ceramics in a piezoelectric road energy harvester was proposed to offer new ideas for the industrialization of piezoelectric road backends.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. H. Yang, L. Wang, B. Zhou, Y. Wei, and Q. Zhao, A preliminary study on the highway piezoelectric power supply system. Int. J. Pavement Res. Technol. 11, 168 (2018).

    Article  Google Scholar 

  2. J. Wang, Z. Liu, K. Shi, and G. Ding, Development and application performance of road spring-type piezoelectric transducer for energy harvesting. Smart Mater. Struct. 30, 085020 (2021).

    Article  CAS  Google Scholar 

  3. S.D. Hong, J.H. Ahn, K.-B. Kim, J.H. Kim, J.Y. Cho, M.S. Woo, Y. Song, W. Hwang, D.H. Jeon, J. Kim, S.Y. Jeong, S.B. Woo, C.H. Ryu, Y. Song, and T.H. Sung, Uniform stress distribution road piezoelectric generator with free-fixed-end type central strike mechanism. Energy 239, 121812 (2022).

    Article  Google Scholar 

  4. A. Jasim, G. Yesner, H. Wang, A. Safari, A. Maher, and B. Basily, Laboratory testing and numerical simulation of piezoelectric energy harvester for roadway applications. Appl. Energy. 224, 438 (2018).

    Article  Google Scholar 

  5. J. Wang, X. Qin, Z. Liu, K. Shi, G. Ding, X. Li, and G. Cai, Experimental field study on a full-scale road piezoelectric energy harvester. Smart Mater. Struct. 31, 055003 (2022).

    Article  Google Scholar 

  6. Q. Zhao, L. Wang, K. Zhao, and H. Yang, Development of a novel piezoelectric sensing system for pavement dynamic load identification. Sensors. 19, 4668 (2019).

    Article  CAS  Google Scholar 

  7. H. Yuan, S. Wang, C. Wang, Z. Song, and Y. Li, Design of piezoelectric device compatible with pavement considering traffic: simulation, laboratory and on-site. Appl. Energy. 306, 118153 (2022).

    Article  CAS  Google Scholar 

  8. G.J. Song, K.-B. Kim, J.Y. Cho, M.S. Woo, J.H. Ahn, J.H. Eom, S.M. Ko, C.H. Yang, S.D. Hong, S.Y. Jeong, W.S. Hwang, S.B. Woo, J.P. Jhun, D.H. Jeon, and T.H. Sung, Performance of a speed bump piezoelectric energy harvester for an automatic cellphone charging system. Appl. Energy. 247, 221 (2019).

    Article  Google Scholar 

  9. J. Wang, Z. Liu, G. Ding, H. Fu, and G. Cai, Watt-level road-compatible piezoelectric energy harvester for LED-induced lamp system. Energy 229, 120685 (2021).

    Article  Google Scholar 

  10. R. Salazar, M. Serrano, and A. Abdelkefi, Fatigue in piezoelectric ceramic vibrational energy harvesting: a review. Appl. Energy. 270, 115161 (2020).

    Article  CAS  Google Scholar 

  11. J. Wang, X. Qin, Z. Liu, G. Ding, and G. Cai, Experimental study on fatigue degradation of piezoelectric energy harvesters under equivalent traffic load conditions. Int. J. Fatigue 150, 106320 (2021).

    Article  CAS  Google Scholar 

  12. A. Mazzalai, D. Balma, N. Chidambaram, R. Matloub, and P. Muralt, Characterization and fatigue of the converse piezoelectric effect in PZT films for MEMS applications. J. Microelectromech. Syst. 24, 831 (2015).

    Article  CAS  Google Scholar 

  13. U. Böttger and R. Waser, Interaction between depolarization effects, interface layer, and fatigue behavior in PZT thin film capacitors. J. Appl. Phys. 122, 024105 (2017).

    Article  Google Scholar 

  14. M.-G. Kang, W.-S. Jung, C.-Y. Kang, and S.-J. Yoon, Recent progress on PZT based piezoelectric energy harvesting technologies. Actuators. 5, 5 (2016).

    Article  Google Scholar 

  15. R. Wang, E. Tang, G. Yang, Y. Han, and C. Chen, Discharge characteristics of fractured soft piezoelectric ceramics under repeated impact. Ceram. Int. 46, 23499 (2020).

    Article  CAS  Google Scholar 

  16. R.O. Ritchie and R.H. Dauskardt, Cyclic fatigue of ceramics: a fracture mechanics approach to subcritical crack growth and life prediction. J. Ceram. Soc. Jpn. 99, 1009 (1991).

    Article  Google Scholar 

  17. R. Wang, E. Tang, G. Yang, Y. Han, and C. Chen, Dynamic fracture behavior of piezoelectric ceramics under impact: force-electric response and electrical breakdown. J. Eur. Ceram. Soc. 41, 139 (2021).

    Article  Google Scholar 

  18. J. Nuffer, D.C. Lupascu, A. Glazounov, H.-J. Kleebe, and J. Rödel, Microstructural modifications of ferroelectric lead zirconate titanate ceramics due to bipolar electric fatigue. J. Eur. Ceram. Soc. 22, 2133 (2002).

    Article  CAS  Google Scholar 

  19. P. Pillatsch, B.L. Xiao, N. Shashoua, H.M. Gramling, E.M. Yeatman, and P.K. Wright, Degradation of bimorph piezoelectric bending beams in energy harvesting applications. Smart Mater. Struct. 26, 035046 (2017).

    Article  Google Scholar 

  20. M.S. Woo, S.K. Hong, H.J. Jung, C.H. Yang, D. Song, and T.H. Sung, Study on the strain effect of a piezoelectric energy harvesting module. Ferroelectrics 449, 33 (2013).

    Article  CAS  Google Scholar 

  21. M. Deluca, Microscopic texture characterisation in piezoceramics. Adv. Appl. Ceram. 115, 112 (2016).

    Article  CAS  Google Scholar 

  22. Y. Zhang, D.C. Lupascu, N. Balke, and J. Rödel, Near electrode fatigue in lead zirconate titanate ceramics. J. Phys. IV France. 128, 97 (2005).

    Article  CAS  Google Scholar 

  23. J. Li, Y. Zhang, and J. Huang, Fatigue induced damage zone underneath the electrodes in bulk lead zirconate titanate ceramics. Ferroelectrics 409, 175 (2010).

    Article  CAS  Google Scholar 

  24. Y. Zhang and D.C. Lupascu, Refatigue of ferroelectric lead zirconate titanate. J. Am. Ceram. Soc. 93, 2551 (2010).

    Article  CAS  Google Scholar 

  25. H. Nam, S. Kim, G.P. Khanal, I. Fujii, S. Ueno, and S. Wada, Thermal annealing induced recovery of damaged surface layer for enhanced ferroelectricity in Bi-based ceramics. Jpn. J. Appl. Phys. 58, SLLD04 (2019).

    Article  CAS  Google Scholar 

  26. S. Banerjee, S. Bairagi, and S. Wazed Ali, A critical review on lead-free hybrid materials for next generation piezoelectric energy harvesting and conversion. Ceram. Int. 47, 16402 (2021).

    Article  CAS  Google Scholar 

  27. J.-F. Li, K. Wang, F.-Y. Zhu, L.-Q. Cheng, and F.-Z. Yao, (K, Na)NbO3-based lead-free piezoceramics: fundamental aspects, processing technologies, and remaining challenges. J. Am. Ceram. Soc. 96, 3677 (2013).

    Article  CAS  Google Scholar 

  28. Y. Sahi and S. Chandan, Finite element analysis of lead-free ceramic based cymbal transducer for energy harvesting. Integr. Ferroelectr. 212, 81 (2020).

    Article  CAS  Google Scholar 

  29. M. Vázquez-Rodríguez, F.J. Jiménez, L. Pardo, P. Ochoa, A.M. González, and J. de Frutos, A new prospect in road traffic energy harvesting using lead-free piezoceramics. Materials 12, 3725 (2019).

    Article  Google Scholar 

  30. H. Wei, H. Wang, Y. Xia, D. Cui, Y. Shi, M. Dong, C. Liu, T. Ding, J. Zhang, and Y. Ma, An overview of lead-free piezoelectric materials and devices. J. Mater. Chem. C. 6, 12446 (2018).

    Article  CAS  Google Scholar 

  31. T. Ibn-Mohammed, I.M. Reaney, S.C.L. Koh, A. Acquaye, D.C. Sinclair, C.A. Randall, F.H. Abubakar, L. Smith, G. Schileo, and L. Ozawa-Meida, Life cycle assessment and environmental profile evaluation of lead-free piezoelectrics in comparison with lead zirconate titanate. J. Eur. Ceram. Soc. 38, 4922 (2018).

    Article  CAS  Google Scholar 

  32. X. Xu, D. Cao, H. Yang, and M. He, Application of piezoelectric transducer in energy harvesting in pavement. Int. J. Pavement Res. Technol. 11, 388 (2018).

    Article  Google Scholar 

  33. Y. Zhao, Y. Zhang, and X. Wang, Effect of calcining temperature on microstructures and electrical properties in modified lead zirconate titanate ceramics. J. Mater. Sci. Mater. Electron. 24, 2240 (2013).

    Article  CAS  Google Scholar 

  34. J. Ma, K. Zhu, D. Huo, X. Qi, E. Sun, and R. Zhang, Performance enhancement of the piezoelectric ceramics by alternating current polarizing. Appl. Phys. Lett. 118, 022901 (2021).

    Article  CAS  Google Scholar 

  35. M.-H. Zhang, Y.-X. Liu, K. Wang, J. Koruza, and J. Schultheiß, Origin of high electromechanical properties in (K, Na)NbO3-based lead-free piezoelectrics modified with BaZrO3. Phys. Rev. Mater. 4, 064407 (2020).

    Article  CAS  Google Scholar 

  36. W. Jiang, D. Yuan, S. Xu, H. Hu, J. Xiao, A. Sha, and Y. Huang, Energy harvesting from asphalt pavement using thermoelectric technology. Appl. Energy 205, 941 (2017).

    Article  Google Scholar 

  37. T. Ibn-Mohammed, S.C.L. Koh, I.M. Reaney, A. Acquaye, D. Wang, S. Taylor, and A. Genovese, Integrated hybrid life cycle assessment and supply chain environmental profile evaluations of lead-based (lead zirconate titanate) versus lead-free (potassium sodium niobate) piezoelectric ceramics. Energy Environ. Sci. 9, 3495 (2016).

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This research was supported by the National Natural Science Foundation of China (grant numbers 52108338). This financial support is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rila Anda.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhu, W., Yuan, G., Liu, Z. et al. Output Performance of a Road Energy Harvester Based on Piezoelectric Ceramic Recycling Technology. J. Electron. Mater. 52, 3640–3651 (2023). https://doi.org/10.1007/s11664-023-10323-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-023-10323-y

Keywords

Navigation