Skip to main content
Log in

Effect of Cobalt Doping on the Structural, Linear, and Nonlinear Optical Properties in Ba1−xCoxTiO3 Perovskites

  • Original Research Article
  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

The crystal structure, morphology, and linear and nonlinear optical properties of Co-doped Ba1−xCoxTiO3 (x = 0.00, 0.02, 0.03, 0.04, and 0.06) were investigated using x-ray diffraction (XRD), scanning electron microscopy, and UV–visible spectroscopy measurements. The XRD patterns confirmed that the Ba1−xCoxTiO3 samples crystallized in the perovskite phase, and a transition from quadratic to pseudo-cubic phase was observed with Co doping. Upon doping, the band gap (Eg) decreased from 3.14  eV to 2.11 eV, indicating that Co doping into BaTiO3 caused a change in their electronic levels associated with lattice defects. Additionally, the optical parameters including linear refractive index, extinction coefficient, dielectric coefficient, optical conductivity (σopt), and the static index (n0) were extracted and linked to the Co content. Finally, analysis of the linear (LOp) and nonlinear optical (NLOp) parameters of Ba1−xCoxTiO3 revealed that the increase in Co content induces an increase in the NLOp refractive index (n2) and third-order NLOp susceptibility χ(3).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. L.H. Phuc, N.Q. Hien, and H.T. Nguyen-Truong, Dielectric and optical properties of cubic perovskites ATiO3 (A = Ca, Sr, Ba, Pb). Solid State Commun. 350, 114760 (2022).

    Article  CAS  Google Scholar 

  2. L.H. Omari, H. Lemziouka, M. Haddad, and T. Lamhasni, Structural, optical and electrical properties of 0.97(PbTiO3)-0.03(LaFeO3) solid solutions. Mater. Today Proc. 13, 1205 (2019).

    Article  CAS  Google Scholar 

  3. A. Petraru, J. Schubert, M. Schmid, and Ch. Buchal, Ferroelectric BaTiO3, thin-film optical waveguide modulators. Appl. Phys. Lett. 81, 1375 (2002).

    Article  CAS  Google Scholar 

  4. W.F. Zhang, Y.B. Huang, M.S. Zhang, and Z.G. Liu, Nonlinear optical absorption in undoped and cerium-doped BaTiO3 thin films using Z-scan technique. Appl. Phys. Lett 76, 1003 (2000).

    Article  CAS  Google Scholar 

  5. S. Valencia, A. Crassous, L. Bocher, V. Garcia, X. Moya, R.O. Cherifi, C. Deranlot, K. Bouzehouane, S. Fusil, A. Zobelli, A. Gloter, N.D. Mathur, A. Gaupp, R. Abrudan, F. Radu, A. Barthélémy, and M. Bibes, Interface-induced room-temperature multiferroicity in BaTiO3. Nat. Mater. 10, 753 (2011).

    Article  CAS  Google Scholar 

  6. R. Bottcher, H.T. Langhammer, and T. Muller, 3C–6H phase transition in BaTiO3 induced by Fe ions: an electron paramagnetic resonance study. J. Phys. Condens. Matter. 20, 505209 (2008).

    Article  Google Scholar 

  7. X.S. Wang, L.L. Zhang, H. Liu, J.W. Zhai, and X. Yao, Dielectric nonlinear properties of BaTiO3–CaTiO3–SrTiO3 ceramics near the solubility limit. Mater. Chem. Phys. 112, 675 (2008).

    Article  CAS  Google Scholar 

  8. L. Nedelcu et al., Structural and dielectric properties of Ba(X1/3Ta2/3)O3 thin films grown by RF-PLD. Appl. Surf. Sci. 278, 158 (2013).

    Article  CAS  Google Scholar 

  9. H. Lemziouka, R. Moubah, F.Z. Rachid, Y. Jouane, E.K. Hlil, M. Abid, and H. Lassri, Extrinsic magnetismin Co-doped BaTiO3 powders prepared by sol–gel route. Ceram. Int. 42, 19402 (2016).

    Article  CAS  Google Scholar 

  10. R.N. Schwartz, B.A. Wechsler, and L. Weat, Spectroscopic and photorefractive properties of molybdenum-doped barium titanate. Appl. Phys. Lett. 67, 1353 (1995).

    Article  Google Scholar 

  11. C.L. Hsieh, R. Grange, Y. Pu, and D. Psaltis, Three-dimensional harmonic holographic microcopy using nanoparticles as probes for cell imaging. Opt. Express 17(4), 2880 (2009).

    Article  CAS  Google Scholar 

  12. S. Ramakanth, S. Hamad, S. Venugopal Rao, and K.C. James Raju, Magnetic and nonlinear optical properties of BaTiO3 nanoparticles. AIP Adv. 5, 057139 (2015).

    Article  Google Scholar 

  13. D.N. Nikogosyan, Nonlinear Optical Crystals: A Complete Survey (New York: Springer, 2005), pp.1–427.

    Google Scholar 

  14. V. Tuyikese, L.H. Omari, and F. Fraija, Investigation of structural, optical and dispersion parameters of La2xAxTi2O7 (A = Bi, Ce, and Y, with x = 0.0 and 0.1) compounds. Optik 241, 166953 (2021).

    Article  Google Scholar 

  15. S.H. Wemple and M. DiDomenico, Phys. Rev. B 3, 1338 (1971).

    Article  Google Scholar 

  16. J. Shah and R.K. Kotnala, Induced magnetism and magnetoelectric coupling in ferroelectric BaTiO3 by Cr-doping synthesized by a facile chemical route. J. Mater. Chem. A 1, 8601 (2013).

    Article  CAS  Google Scholar 

  17. S. Dastagiri, M.V. Lakshmaiah, K. Chandra Babu Naidu, N. Suresh Kumar, and A. Khan, Induced dielectric behavior in high dense AlxLa1xTiO3 (x = 0.2–0.8) nanospheres. J. Mater. Sci. Mater. Electron. 30, 20253 (2019).

    Article  CAS  Google Scholar 

  18. D. Baba Basha, N. Suresh Kumar, K. Chandra Babu Naidu, and G. Ranjith Kumar, Structural, electrical, and magnetic properties of nano Sr1−XLaXFe12O19 (X = 0.2–0.8). Sci. Rep. 12, 12723 (2022).

    Article  CAS  Google Scholar 

  19. S. Vignesh and J.K. Sundar, Investigations of visible light driven Sn and Cu doped ZnO hybrid nanoparticles for photocatalytic performance and antibacterial activity. Appl. Surf. Sci. 449, 617 (2018).

    Article  Google Scholar 

  20. A.J. Reddy, M.K. Kokila, H. Nagabhushana, R.P.S. Chakradhar, C. Shivakumara, J.L. Rao, and B.M. Nagabhushana, Structural, optical and EPR studies on ZnO: Cu nanopowders prepared via low temperature solution combustion synthesis. J. Alloys Compd. 509(17), 5349 (2011).

    Article  CAS  Google Scholar 

  21. H. Lemziouka, A. Boutahar, R. Moubah, L.H. Omari, S. Bahhar, M. Abid, and H. Lassri, Synthesis, structural, optical and dispersion parameters of La-doped spinel zinc ferrites ZnFe2xLaxO4. Vacuum 182, 109780 (2020).

    Article  CAS  Google Scholar 

  22. D. Rytz, B.A. Wechsler, M.H. Garrett, C.C. Nelson, and R.N. Schwartz, Photorefractive properties of BaTiO3:Co. J. Opt. Soc. Am. B 7, 2245 (1990).

    Article  CAS  Google Scholar 

  23. M.T. Camci, M. Pauly, C. Lefevre, C. Bouillet, M. Maaloum, G. Decher, and D. Martelet, Polarization-dependent optical band gap energy of aligned semiconducting titanium oxide nanowire deposits. Nanoscale 13, 8958 (2021).

    Article  Google Scholar 

  24. J. Tauc, Amorphous and Liquid Semiconductors, Vol. 159 (London: Plenum, 1974).

    Book  Google Scholar 

  25. P.T. Phong, L.T.H. Phong, N.V. Dang, D.H. Manh, and I.J. Lee, Structural, optical and conductivity properties of BaTi1xNixO3. Ceram. Int. 42, 7414 (2016).

    Article  CAS  Google Scholar 

  26. J. Young Han and C. Wung Bark, Influence of transition metal doping (X = Co, Fe) on structural, optical properties of ferroelectric Bi3.25La0.75X1Ti2O12. Nano Converg. 2, 7 (2015).

    Article  Google Scholar 

  27. R. Moubah, S. Colis, M. Gallart, G. Schmerber, P. Gilliot, and A. Dinia, Thickness-dependent optical band gap in one-dimensional Ca3Co2O6 nanometric films. J. Lumin. 132, 457–460 (2012).

    Article  CAS  Google Scholar 

  28. L.H. Omari, H. Lemziouka, R. Moubah, M. Haddad, and H. Lassri, Structural and optical properties of Fe-doped Ruddlesden–Popper Ca3Ti2xFexO7δ nanoparticles. Mater. Chem. Phys. 246, 122810 (2020).

    Article  CAS  Google Scholar 

  29. N.V. Dang, H.M. Nguyen, P.-Y. Chuang, T.D. Thanh, V.D. Lam, C.-H. Lee, and L.V. Hong, Structure of BaTi1xFexO3δ multiferroics using X-ray analysis. Chin. J. Phys. 50, 262 (2012).

    CAS  Google Scholar 

  30. T.P. Rao, M.S. Kumar, S.A. Angayarkanni, and M. Ashok, Effect of stress on optical band gap of ZnO thin films with substrate temperature by spray pyrolysis. J. Alloys Compd. 485, 413 (2009).

    Article  CAS  Google Scholar 

  31. H. Mahdhi, J.L. Gauffier, K. Djessas, and Z. Ben Ayadi, Structural, optical and electrical properties of transparent conductive ZnO: Ca films prepared by rf magnetron sputtering from aerogel nanopowders. Optik 137, 156 (2017).

    Article  CAS  Google Scholar 

  32. O. Polat, M. Caglar, F.M. Coskun, M. Coskun, Y. Caglar, and A. Turut, An investigation of the optical properties of YbFe1xIrxO3δ (x = 0, 0.01 and 0.10) orthoferrite films. Vacuum 173, 109 (2020).

    Article  Google Scholar 

  33. A. Natik, Y. Abid, R. Moubah, M. Abid, and H. Lassri, Ab-initio investigation of the structural, electronic and optical properties of lead-free halide Cs2TiI6 double perovskites. Solid State Commun. 319, 114006 (2020).

    Article  CAS  Google Scholar 

  34. O. Bayram and O. Simsek, Optical, chemical and dielectric properties of PPCIN films derived from essential oil using RF plasma polymerization. Vacuum 156, 198 (2018).

    Article  CAS  Google Scholar 

  35. A.S. Hassanien, Studies on dielectric properties, opto-electrical parameters and electronic polarizability of thermally evaporated amorphous Cd50S50xSex thin films. J. Alloys Compd. 671, 566 (2016).

    Article  CAS  Google Scholar 

  36. O.R. Ijeh, A.C. Nwanya, A.C. Nkele, I.G. Madiba, A.K.H. Bashir, A.B.C. Ekwealor, R.U. Osuji, M. Maaza, and F. Ezema, Ceram. Int. 46, 10820 (2020).

    Article  CAS  Google Scholar 

  37. J.A. Miragliotta and J. Hopkins, Analytical and device-related applications of nonlinear optics. APL Techn. Digest 16, 4 (1995).

    Google Scholar 

  38. S. Sharda, N. Sharma, P. Sharma, and V. Sharma, Band gap and dispersive behaviour of Ge alloyed a—SbSe thin films using single transmission spectrum. Mater. Chem. Phys. 134, 158 (2012).

    Article  CAS  Google Scholar 

  39. S. Wemple, Refractive-index behavior of amorphous semiconductors and glasses. Phys. Rev. B 7, 3767 (1973).

    Article  CAS  Google Scholar 

  40. M. El-Nahass and A. Farag, Structural, optical and dispersion characteristics of nanocrystalline GaN films prepared by MOVPE. Opt. Laser Technol. 44, 497 (2012).

    Article  CAS  Google Scholar 

  41. M. Behera et al., Influence of Bi content on linear and nonlinear optical properties of As40Se60xBix chalcogenide thin films. Curr. Appl. Phys. 19, 884 (2019).

    Article  Google Scholar 

  42. N.K. Sahoo, S. Thakur, and R.B. Tokas, Achieving superior band gap, refractive index and morphology in composite oxide thin film systems violating the Moss rule. J. Phys. D Appl. Phys. 39, 2571 (2006).

    Article  CAS  Google Scholar 

  43. T.C.S. Girisun and S. Dhanuskodi, Linear and nonlinear optical properties of tris thiourea zinc sulphate single crystals. J. Cryst. Res. Technol. 12, 1297 (2009).

    Article  Google Scholar 

  44. M. Sheik-Bahae et al., Dispersion and band-gap scaling of the electronic Kerr effect in solids associated with two-photon absorption. Phys. Rev. Lett. 65(1), 96 (1990).

    Article  CAS  Google Scholar 

  45. M. Frumar, J. Jedelsky, B. Frumarova, T. Wagner, and M. Hrdlička, Optically and thermally induced changes of structure, linear and non-linear optical properties of chalcogenides thin films. J. Non-Cryst. Solids. 326, 399 (2003).

    Article  Google Scholar 

  46. M. Shkir, M. Anis, S.S. Shaikh, and S. AlFaify, An investigation on structural, morphological, optical and third order nonlinear properties of facilely spray pyrolysis fabricated In: CdS thin films. Superlattices Microstruct. 133, 106202 (2019).

    Article  CAS  Google Scholar 

  47. R. Adair, L. Chase, and S.A. Payne, Nonlinear refractive index of optical crystals. Phys. Rev. B. 39(5), 3337 (1989).

    Article  CAS  Google Scholar 

  48. H. Ticha and L. Tichy, Semiempirical relation between non-linear susceptibility (refractive index), linear refractive index and optical gap and its application to amorphous chalcogenides. J. Optoelectron. Adv. Mater. 4, 381 (2002).

    CAS  Google Scholar 

  49. J. Xia, Y. Liu, X. Qiu, Y. Mao, J. He, and L. Chen, Solvothermal synthesis of nanostructured CuInS2 thin films on FTO substrates and their photoelectrochemical properties. Mater. Chem. Phys. 136, 823 (2012).

    Article  CAS  Google Scholar 

  50. M. Shkir, V. Ganesh, S. AlFaify, and I.S. Yahia, Structural, linear and third order nonlinear optical properties of drop casting deposited high quality nanocrystalline phenol red thin films. J. Mater. Sci. Mater. Electron. 28, 10573 (2017).

    Article  CAS  Google Scholar 

  51. Z. Sofiani, B. Sahraoui, M. Addou, R. Adhiri, M.A. Lamrani, L. Dghoughi, N. Fellah, B. Derkowska, and W. Bala, Third harmonic generation in undoped and X doped ZnO films (X: Ce, F, Er, Al, Sn) deposited by spray pyrolysis. J. Appl. Phys. 101, 063104 (2007).

    Article  Google Scholar 

  52. W.S. Shi, Z.H. Chen, N.N. Liu, H.B. Lu, Y.L. Zhou, D.F. Cui, and G.Z. Yang, Large third-order optical nonlinearity in SrBi2Ta2O9 thin films by pulsed laser deposition. Appl. Phys. Lett. 75, 1547 (1999).

    Article  CAS  Google Scholar 

  53. W.T. Wang, G. Yang, P. Duan, Y.L. Zhou, and Z.H. Chen, Fe-doped BaTiO3 thin films with large third-order nonlinear optical susceptibility. Chin. Phys. Lett. 19, 1122 (2002).

    Article  Google Scholar 

  54. I. Sharma, S.K. Tripathi, and P.B. Barman, Effect of deposition parameters and semi-empirical relations between non-linear refractive index with linear refractive index and third order susceptibility for a-Ge20Se70xIn10Bix thin films. J. Appl. Phys. 110, 0431081 (2011).

    Article  Google Scholar 

  55. F.Z. Rachid, L.H. Omari, H. Lassri, H. Lemziouka, S. Derkaoui, M. Haddad, T. Lamhasni, and M. Sajieddine, Synthesis, structural and optical properties of LaFe1xCrxO3 nanoparticles. Opt. Mater. 109, 110332 (2020).

    Article  CAS  Google Scholar 

  56. L. Pintilie and I. Pintilie, Ferroelectrics: new wide-gap materials for UV detection. Mater. Sci. Eng. B 80, 388 (2001).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Boutahar.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lemziouka, H., Nekkach, F., Boutahar, A. et al. Effect of Cobalt Doping on the Structural, Linear, and Nonlinear Optical Properties in Ba1−xCoxTiO3 Perovskites. J. Electron. Mater. 52, 3420–3430 (2023). https://doi.org/10.1007/s11664-023-10311-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-023-10311-2

Keywords

Navigation