Skip to main content
Log in

Thermoelectric Properties of Cu2Se Compound Fabricated at Low-Temperature Combustion Synthesis as a New Approach with Alternative Techniques

  • Original Research Article
  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

This article report the combustion synthesis of a Cu2Se thermoelectric intermetallic compound via spark plasma sintering (SPS). The elemental copper and selenium powder mixture makes a combustion reaction at ~ 130°C during spark plasma-assisted heating. The applied load and combustion reaction together facilitate the densification of the reacted compound to a relative density of 88%. The x-ray diffractometer (XRD) data of the as-sintered bulk reacted compound confirms the formation of α-Cu2Se and β-Cu2Se compounds. On further short annealing at 350°C for 10 min, the β-Cu2Se transforms to α-Cu2Se and a complete monoclinic α-Cu2Se phase is obtained in the compound. The highest figure-of-merit (ZT) value of 0.61 at 650 K was achieved. This low-temperature sintering approach helps to overcome the issue of copper ion migration during SPS, and hence the chemical homogeneity is ascertained throughout the compound. The thermoelectric properties were compared with the Cu2Se material synthesized from other routes and found a superior ZT value than material prepared from solvothermal synthesis, mechanical alloying and hydrothermal-hot press techniques.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. P. Qiu, X. Shi, and L. Chen, Cu-based thermoelectric materials. Energy Storage Mater. 3, 85 (2016).

    Article  Google Scholar 

  2. L. Zhao, X. Wang, F.F. Yun, J. Wang, Z. Cheng, S. Dou, J. Wang, and G.J. Snyder, The effects of Te2− and I substitutions on the electronic structures, thermoelectric performance, and hardness in melt-quenched highly dense Cu2−xSe. Adv. Electron. Mater. 1, 1400015 (2015).

    Article  Google Scholar 

  3. P. Fan, X. Huang, T. Chen, F. Li, Y. Chen, B. Jabar, S. Chen, H. Ma, G. Liang, J. Luo, X. Zhang, and Z. Zheng, α-Cu2Se thermoelectric thin films prepared by copper sputtering into selenium precursor layers. Chem. Eng. J. 410, 128444 (2021).

    Article  CAS  Google Scholar 

  4. Z.-G. Chen, G. Han, L. Yang, L. Cheng, and J. Zou, Nanostructured thermoelectric materials: current research and future challenge. Prog. Nat. Sci. Mater. Int. 22, 535 (2012).

    Article  Google Scholar 

  5. B. Hamawandi, S. Ballikaya, M. Råsander, J. Halim, L. Vinciguerra, J. Rosén, M. Johnsson, and M.S. Toprak, Composition tuning of nanostructured binary copper selenides through rapid chemical synthesis and their thermoelectric property evaluation. Nanomaterials 10, 854 (2020).

    Article  CAS  Google Scholar 

  6. C.Y. Oztan, B. Hamawandi, Y. Zhou, S. Ballikaya, M.S. Toprak, R.M. Leblanc, V. Coverstone, and E. Celik, Thermoelectric performance of Cu2Se doped with rapidly synthesized gel-like carbon dots. J. Alloys Compd. 864, 157916 (2021).

    Article  CAS  Google Scholar 

  7. R. Murugasami, P. Vivekanandhan, S. Kumaran, R.S. Kumar, and T.J. Tharakan, Thermoelectric power factor performance of silicon-germanium alloy doped with phosphorus prepared by spark plasma assisted transient liquid phase sintering. Scr. Mater. 143, 35 (2018).

    Article  CAS  Google Scholar 

  8. A. Raphel, A.K. Singh, P. Vivekanandhan, and S. Kumaran, Thermoelectric performance of nanostructured PbSnTeSe high entropy thermoelectric alloy synthesized via spark plasma sintering. Phys. B Condens. Matter. 622, 413319 (2021).

    Article  CAS  Google Scholar 

  9. H. Tang, H.-L. Zhuang, B. Cai, J. Asafandiyar, J. Dong, F.-H. Sun, and J.-F. Li, Enhancing the thermoelectric performance of Cu1.8S by Sb/Sn co-doping and incorporating multiscale defects to scatter heat-carrying phonons. J. Mater. Chem. C 7, 4026 (2019).

    Article  CAS  Google Scholar 

  10. H. Liu, X. Shi, F. Xu, L. Zhang, W. Zhang, L. Chen, Q. Li, C. Uher, T. Day, and G.J. Snyder, Copper ion liquid-like thermoelectrics. Nat. Mater. 11, 422 (2012).

    Article  Google Scholar 

  11. J.H. Kim, S. Oh, W.H. Sohn, J.-S. Rhyee, S.-D. Park, H. Kang, and D. Ahn, Thermoelectric, thermodynamic, and structural properties in Cu1.94A0.02Se (A= Al, Ga, and In) polycrystalline compounds. Acta Mater. 100, 32 (2015).

    Article  CAS  Google Scholar 

  12. A.A. Olvera, N.A. Moroz, P. Sahoo, P. Ren, T.P. Bailey, A.A. Page, C. Uher, and P.F.P. Poudeu, Partial indium solubility induces chemical stability and colossal thermoelectric figure of merit in Cu2Se. Energy Environ. Sci. 10, 1668 (2017).

    Article  CAS  Google Scholar 

  13. L. Zhao, S.M.K.N. Islam, J. Wang, D.L. Cortie, X. Wang, Z. Cheng, J. Wang, N. Ye, S. Dou, X. Shi, L. Chen, G.J. Snyder, and X. Wang, Significant enhancement of figure-of-merit in carbon-reinforced Cu2Se nanocrystalline solids. Nano Energy 41, 164 (2017).

    Article  CAS  Google Scholar 

  14. M. Li, D.L. Cortie, J. Liu, D. Yu, S.M.K.N. Islam, L. Zhao, D.R.G. Mitchell, R.A. Mole, M.B. Cortie, S. Dou, and X. Wang, Ultra-high thermoelectric performance in graphene incorporated Cu2Se: role of mismatching phonon modes. Nano Energy 53, 993 (2018).

    Article  CAS  Google Scholar 

  15. D. Byeon, R. Sobota, K. Delime-Codrin, S. Choi, K. Hirata, M. Adachi, M. Kiyama, T. Matsuura, Y. Yamamoto, M. Matsunami, and T. Takeuchi, Discovery of colossal seebeck effect in metallic Cu2Se. Nat. Commun. 10, 1 (2019).

    Article  Google Scholar 

  16. D. Byeon, R. Sobota, S. Singh, S. Ghodke, S. Choi, N. Kubo, M. Adachi, Y. Yamamoto, M. Matsunami, and T. Takeuchi, Long-term stability of the colossal seebeck effect in metallic Cu2Se. J. Electron. Mater. 49, 2855 (2020).

    Article  CAS  Google Scholar 

  17. S. Singh, K. Hirata, D. Byeon, T. Matsunaga, O. Muthusamy, S. Ghodke, M. Adachi, Y. Yamamoto, M. Matsunami, and T. Takeuchi, Investigation of Thermoelectric Properties of Ag2SxSe1−x (x= 0.0, 0.2 and 0.4). J. Electron. Mater. 49, 2846 (2020).

    Article  CAS  Google Scholar 

  18. H. Lai, S. Singh, Y. Peng, K. Hirata, M. Ryu, A.K.R. Ang, L. Miao, and T. Takeuchi, Enhanced performance of monolithic chalcogenide thermoelectric modules for energy harvesting via co-optimization of experiment and simulation. ACS Appl. Mater. Interfaces. 14, 38642 (2022).

    Article  CAS  Google Scholar 

  19. H. Liu, X. Yuan, P. Lu, X. Shi, F. Xu, Y. He, Y. Tang, S. Bai, W. Zhang, L. Chen, Y. Lin, L. Shi, H. Lin, X. Gao, X. Zhang, H. Chi, and C. Uher, Ultrahigh thermoelectric performance by electron and phonon critical scattering in Cu2Se1−xIx. Adv. Mater. 25, 6607 (2013).

    Article  CAS  Google Scholar 

  20. K. Hirata, T. Matsunaga, S. Singh, M. Matsunami, and T. Takeuchi, High-performance solid-state thermal diode consisting of Ag2 (S, Se, Te). J. Electron. Mater. 49, 2895 (2020).

    Article  CAS  Google Scholar 

  21. S. Butt, W. Xu, M.U. Farooq, G.K. Ren, Q. Zhang, Y. Zhu, S.U. Khan, L. Liu, M. Yu, F. Mohmed, Y. Lin, and C.-W. Nan, Enhanced thermoelectricity in high-temperature β-phase copper(I) selenides embedded with Cu2Te nanoclusters. ACS Appl. Mater. Interfaces 8, 15196 (2016).

    Article  CAS  Google Scholar 

  22. A. Nieroda Pawełand Kusior, J. Leszczyński, and A. Rutkowski Pawełand Koleżyński, Thermoelectric properties of Cu2Se synthesized by hydrothermal method and densified by SPS technique. Materials (Basel). 14, 3650 (2021).

    Article  Google Scholar 

  23. F. Gao, S.L. Leng, Z. Zhu, X.J. Li, X. Hu, and H.Z. Song, Preparation and thermoelectric properties of Cu2Se hot-pressed from hydrothermal synthesis nanopowders. J. Electron. Mater. 47, 2454 (2018).

    Article  CAS  Google Scholar 

  24. Y.-B. Zhu, B.-P. Zhang, and Y. Liu, Enhancing thermoelectric performance of Cu2Se by doping Te. Phys. Chem. Chem. Phys. 19, 27664 (2017).

    Article  CAS  Google Scholar 

  25. J. Lei, Z. Ma, D. Zhang, Y. Chen, C. Wang, X. Yang, Z. Cheng, and Y. Wang, High thermoelectric performance in Cu2Se superionic conductor with enhanced liquid-like behaviour by dispersing SiC. J. Mater. Chem. A 7, 7006 (2019).

    Article  CAS  Google Scholar 

  26. W.-D. Liu, X.-L. Shi, R. Moshwan, L. Yang, Z.-G. Chen, and J. Zou, Solvothermal synthesis of high-purity porous Cu1.7Se approaching low lattice thermal conductivity. Chem. Eng. J. 375, 121996 (2019).

    Article  CAS  Google Scholar 

  27. X. Su, F. Fu, Y. Yan, G. Zheng, T. Liang, Q. Zhang, X. Cheng, D. Yang, H. Chi, X. Tang, Q. Zhang, and C. Uher, Self-propagating high-temperature synthesis for compound thermoelectrics and new criterion for combustion processing. Nat. Commun. 5, 1 (2014).

    Article  Google Scholar 

  28. T. Hu, Y. Yan, S. Wang, X. Su, W. Liu, G. Tan, P. Poudeu-Poudeu, and X. Tang, One-step ultra-rapid fabrication and thermoelectric properties of Cu2Se bulk thermoelectric material. RSC Adv. 9, 10508 (2019).

    Article  CAS  Google Scholar 

  29. F. Rouessac and R.-M. Ayral, Combustion synthesis: a new approach for preparation of thermoelectric zinc antimonide compounds. J. Alloys Compd. 530, 56 (2012).

    Article  CAS  Google Scholar 

  30. E. Godlewska, K. Mars, and K. Zawadzka, Alternative route for the preparation of CoSb3 and Mg2Si derivatives. J. Solid State Chem. 193, 109 (2012).

    Article  CAS  Google Scholar 

  31. K. Zhao, A.B. Blichfeld, H. Chen, Q. Song, T. Zhang, C. Zhu, D. Ren, R. Hanus, P. Qiu, B.B. Iversen, F. Xu, G.J. Snyder, X. Shi, and L. Chen, Enhanced thermoelectric performance through tuning bonding energy in Cu2Se1–x Sx liquid-like materials. Chem. Mater. 29, 6367 (2017).

    Article  CAS  Google Scholar 

  32. F.S. Liu, Z.N. Gong, M.J. Huang, W.Q. Ao, Y. Li, and J.Q. Li, Enhanced thermoelectric properties of β-Cu2Se by incorporating CuGaSe2. J. Alloys Compd. 688, 521 (2016).

    Article  CAS  Google Scholar 

  33. G. Bernard-Granger and C. Guizard, Spark plasma sintering of a commercially available granulated zirconia powder: I. Sintering path and hypotheses about the mechanism(s) controlling densification. Acta Mater. 55, 3493 (2007).

    Article  CAS  Google Scholar 

  34. L.H. Liu, C. Yang, Y.G. Yao, F. Wang, W.W. Zhang, Y. Long, and Y.Y. Li, Densification mechanism of Ti-based metallic glass powders during spark plasma sintering process. Intermetallics 66, 1 (2015).

    Article  Google Scholar 

  35. F. Jia, S. Zhang, X. Zhang, X. Peng, H. Zhang, and Y. Xiang, Sb-triggered β-to-α transition: solvothermal synthesis of metastable α-Cu2Se. Chem. Eur. J. 20, 15941 (2014).

    Article  CAS  Google Scholar 

  36. L. Yang, Z.-G. Chen, G. Han, M. Hong, and J. Zou, Impacts of Cu deficiency on the thermoelectric properties of Cu2-XSe nanoplates. Acta Mater. 113, 140 (2016).

    Article  CAS  Google Scholar 

  37. D.R. Brown, T. Day, T. Caillat, and G.J. Snyder, Chemical stability of (Ag, Cu)2Se: a historical overview. J. Electron. Mater. 42, 2014 (2013).

    Article  CAS  Google Scholar 

  38. Q. Hu, Y. Zhang, Y. Zhang, X.-J. Li, and H. Song, High thermoelectric performance in Cu2Se/CDs hybrid materials. J. Alloys Compd. 813, 152204 (2020).

    Article  CAS  Google Scholar 

  39. R. Murugasami, P. Vivekanandhan, S. Kumaran, R.S. Kumar, and T.J. Tharakan, Densification and alloying of ball milled silicon-germanium powder mixture during spark plasma sintering. Adv. Powder Technol. 28, 506 (2017).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Kumaran.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 1131 KB).

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Thangavel, N., Kumaran, S. Thermoelectric Properties of Cu2Se Compound Fabricated at Low-Temperature Combustion Synthesis as a New Approach with Alternative Techniques. J. Electron. Mater. 52, 2168–2176 (2023). https://doi.org/10.1007/s11664-022-10196-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-022-10196-7

Keywords

Navigation