Skip to main content
Log in

Lateral P–N Junction Photodiodes Using Lateral Polarity Structure GaN Films: A Theoretical Perspective

  • Original Research Article
  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

In this work, we propose lateral p–n junction self-powered ultraviolet photodiodes using lateral polarity structure GaN (LPS-GaN) films. The design of the proposed photodiode is inspired by the recent demonstrations of obtaining laterally varying doping profiles by controlling the incorporation of donor and acceptor impurities in LPS-GaN. The proposed photodiodes provide a larger area for light absorption near the surface, and at the same time provide a large photocurrent even at zero external bias voltage, thanks to the electric field distribution of the lateral p–n junction. Through technology computer-aided design simulations and semi-analytical calculations, we show that the proposed photodiodes outperform the traditionally popular metal–semiconductor–metal (MSM) GaN photodiodes. The results shown in this study hold promise for realizing solar-blind photodetectors using polar GaN and AlGaN films.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Q. Cai, H. You, H. Guo, J. Wang, B. Liu, Z. Xie, D. Chen, H. Lu, Y. Zheng, and R. Zhang, Progress on AlGaN-based solar-blind ultraviolet photodetectors and focal plane arrays. Light Sci. Appl. 10, 94 (2021).

    Article  CAS  Google Scholar 

  2. A. Kalra, S. Rathkanthiwar, R. Muralidharan, S. Raghavan, and D.N. Nath, Polarization-graded AlGaN solar-blind p–i–n detector with 92% Zero-bias external quantum efficiency. IEEE Photonics Technol. Lett. 31, 1237 (2019).

    Article  CAS  Google Scholar 

  3. L. Gautam, A.G. Jaud, J. Lee, G.J. Brown, and M. Razeghi, Geiger-mode operation of AlGaN avalanche photodiodes at 255 nm. IEEE J. Quantum Electron. 57, 1 (2021).

    Article  Google Scholar 

  4. M. Elbar, B. Alshehri, S. Tobbeche, and E. Dogheche, Design and simulation of InGaN/GaN p–i–n photodiodes. Phys. Status Solidi A 215, 1700521 (2018).

    Article  Google Scholar 

  5. B. Li, Z. Zhang, X. Zhang, H. Wang, H. Wang, Z. Wu, G. Wang, and H. Jiang, InGaN-based MSM visible light photodiodes with recessed anode. IEEE Photonics Technol. Lett. 31, 1469 (2019).

    Article  CAS  Google Scholar 

  6. G. Yang, Y. Li, Y. Liu, F. Xie, Y. Gu, X. Yang, C. Wei, B. Bian, X. Zhang, and N. Lu, Surface modification of AlGaN solar-blind ultraviolet MSM photodetectors with octadecanethiol. IEEE Trans. Elect. Dev. 69, 195 (2022).

    Article  CAS  Google Scholar 

  7. D. Li, X. Sun, H. Song, Z. Li, H. Jiang, Y. Chen, G. Miao, and B. Shen, Effect of asymmetric Schottky barrier on GaN-based metal-semiconductor-metal ultraviolet detector. Appl. Phys. Lett. 99, 261102 (2011).

    Article  Google Scholar 

  8. M. Mishra, A. Gundimeda, T. Garg, A. Dash, S. Das, and G.G. Vandana, ZnO/GaN heterojunction based self-powered photodetectors: Influence of interfacial states on UV sensing. Appl. Surf. Sci. 478, 1081 (2019).

    Article  CAS  Google Scholar 

  9. A. Yoshikawa, S. Ushida, K. Nagase, M. Iwaya, T. Takeuchi, S. Kamiyama, and I. Akasaki, High-performance solar-blind Al0.6Ga0.4N/Al0.5Ga0.5N MSM type photodetector. Appl. Phys. Lett. 111, 191103 (2017).

    Article  Google Scholar 

  10. C. Guo, C. Guo, W. Guo, W. Guo, Y. Dai, Y. Dai, H. Xu, H. Xu, L. Chen, L. Chen, D. Wang, X. Peng, K. Tang, H. Sun, J. Ye, J. Ye, and J. Ye, Self-powered ultraviolet MSM photodetectors with high responsivity enabled by a lateral n+/n− homojunction from opposite polarity domains. Opt. Lett. 46, 3203 (2021).

    Article  CAS  Google Scholar 

  11. S. Mukhopadhyay, H. Pal, S.R. Narang, C. Guo, J. Ye, W. Guo, and B. Sarkar, Self-powered ultraviolet photodiode based on lateral polarity structure GaN films. J. Vac. Sci. Technol. B 39, 052206 (2021).

    Article  CAS  Google Scholar 

  12. Y. Cao, R. Chu, R. Li, M. Chen, R. Chang, and B. Hughes, High-voltage vertical GaN Schottky diode enabled by low-carbon metal-organic chemical vapor deposition growth. Appl. Phys. Lett. 108, 062103 (2016).

    Article  Google Scholar 

  13. F. Kaess, P. Reddy, D. Alden, A. Klump, L.H. Hernandez-Balderrama, A. Franke, R. Kirste, A. Hoffmann, R. Collazo, and Z. Sitar, The effect of illumination power density on carbon defect configuration in silicon doped GaN. J. Appl. Phys. 120, 235705 (2016).

    Article  Google Scholar 

  14. P. Reddy, B. Sarkar, F. Kaess, M. Gerhold, E. Kohn, R. Collazo, and Z. Sitar, Defect-free Ni/GaN Schottky barrier behavior with high temperature stability. Appl. Phys. Lett. 110, 011603 (2017).

    Article  Google Scholar 

  15. R. Collazo, S. Mita, A. Rice, R.F. Dalmau, and Z. Sitar, Simultaneous growth of a GaN p∕n lateral polarity junction by polar selective doping. Appl. Phys. Lett. 91, 212103 (2007).

    Article  Google Scholar 

  16. H. Xu, J. Jiang, Y. Dai, M. Cui, K. Li, X. Ge, J. Hoo, L. Yan, S. Guo, J. Ning, H. Sun, B. Sarkar, W. Guo, and J. Ye, Polarity control and nanoscale optical characterization of AlGaN-based multiple-quantum-wells for ultraviolet C emitters. ACS Appl. Nano Mater. 3, 5335 (2020).

    Article  CAS  Google Scholar 

  17. R. Collazo, S. Mita, J. Xie, A. Rice, J. Tweedie, R. Dalmau, and Z. Sitar, Implementation of the GaN lateral polarity junction in a MESFET utilizing polar doping selectivity. Phys. Status Solidi A 207, 45 (2010).

    Article  CAS  Google Scholar 

  18. A. Jadhav, Y. Dai, P. Upadhyay, W. Guo, and B. Sarkar, Role of interface induced gap states in polar AlxGa1−xN (0 ≤ x ≤ 1) Schottky diodes. J. Electron. Mater. 50, 3731 (2021).

    Article  CAS  Google Scholar 

  19. D. Szymanski, D. Khachariya, T.B. Eldred, P. Bagheri, S. Washiyama, A. Chang, S. Pavlidis, R. Kirste, P. Reddy, E. Kohn, L. Lauhon, R. Collazo, and Z. Sitar, GaN lateral polar junction arrays with 3D control of doping by supersaturation modulated growth: a path toward III-nitride superjunctions. J. Appl. Phys. 131, 015703 (2022).

    Article  CAS  Google Scholar 

  20. A. Klump, M.P. Hoffmann, F. Kaess, J. Tweedie, P. Reddy, R. Kirste, Z. Sitar, and R. Collazo, Control of passivation and compensation in Mg-doped GaN by defect quasi Fermi level control. J. Appl. Phys. 127, 045702 (2020).

    Article  CAS  Google Scholar 

  21. G. Miceli and A. Pasquarello, Self-compensation due to point defects in Mg-doped GaN. Phys. Rev. B 93, 165207 (2016).

    Article  Google Scholar 

  22. Physical Properties of Semiconductors (NSM Archive), http://www.ioffe.ru/SVA/NSM/Semicond/. Accessed on 20 June 2022.

  23. M. Zhu, J. Chen, J. Xu, and X. Li, Optimization of GaN/InGaN heterojunction phototransistor. IEEE Photonics Technol. Lett. 29, 373 (2017).

    Article  CAS  Google Scholar 

  24. L.-C. Liou and B. Nabet, Simple analytical model of bias dependence of the photocurrent of metal–semiconductor–metal photodetectors. Appl. Opt. 35, 15 (1996).

    Article  CAS  Google Scholar 

  25. D. Brunner, H. Angerer, E. Bustarret, F. Freudenberg, R. Höpler, R. Dimitrov, O. Ambacher, and M. Stutzmann, Optical constants of epitaxial AlGaN films and their temperature dependence. J. Appl. Phys. 82, 5090 (1997).

    Article  CAS  Google Scholar 

  26. K. Honkanen, Fabrication and modelling of SOI and GaAs MSM photodetectors and a GaAs-based integrated photoreceiver. PhD dissertation, Helsinki University of Technology (2001)

  27. E. Sano, A device model for metal-semiconductor-metal photodetectors and its applications to optoelectronic integrated circuit simulation. IEEE Trans. Elect. Dev. 37, 1964 (1990).

    Article  Google Scholar 

  28. N.K.R. Nallabala, S.V.P. Vattikuti, V.K. Verma, V.R. Singh, S. Alhammadi, V.K. Kummara, V. Manjunath, M. Dhanalakshmi, and V.R.M. Reddy, Highly sensitive and cost-effective metal-semiconductor-metal asymmetric type Schottky metallization based ultraviolet photodetecting sensors fabricated on n-type GaN. Mater. Sci. Semicond. Process. 138, 106297 (2022).

    Article  Google Scholar 

  29. L. Ravikiran, K. Radhakrishnan, N. Dharmarasu, M. Agrawal, Z. Wang, A. Bruno, C. Soci, T. Lihuang, and A.K. Siong, Responsivity drop due to conductance modulation in GaN metal-semiconductor-metal Schottky based UV photodetectors on Si(111). Semicond. Sci. Technol. 31, 095003 (2016).

    Article  Google Scholar 

  30. B. Sarkar, P. Reddy, A. Klump, F. Kaess, R. Rounds, R. Kirste, S. Mita, E. Kohn, R. Collazo, and Z. Sitar, On Ni/Au alloyed contacts to Mg-doped GaN. J. Electron. Mater. 47, 305 (2018).

    Article  CAS  Google Scholar 

  31. H. Amano, R. Collazo, C. de Santi, S. Einfeldt, M. Funato, J. Glaab, S. Hagedorn, A. Hirano, H. Hirayama, R. Ishii, Y. Kashima, Y. Kawakami, R. Kirste, M. Kneissl, R.W. Martin, F. Mehnke, M. Meneghini, A. Ougazzaden, P.J. Parbrook, S. Rajan, P. Reddy, F. Römer, J. Ruschel, B. Sarkar, F. Scholz, L. Schowalter, P. Shields, Z. Sitar, L. Sulmoni, T. Wang, T. Wernicke, M. Weyers, B. Witzigmann, Y.-R. Wu, T. Wunderer, and Y. Zhang, The 2020 UV emitter roadmap. J. Phys. D: Appl. Phys. 53, 503001 (2020).

    Article  CAS  Google Scholar 

  32. J.D. Guo, C.I. Lin, M.S. Feng, F.M. Pan, G.C. Chi, and C.T. Lee, A bilayer Ti/Ag ohmic contact for highly doped n-type GaN films. Appl. Phys. Lett. 68, 235 (1996).

    Article  CAS  Google Scholar 

  33. I.-H. Lee, T.-H. Kim, A.Y. Polyakov, A.V. Chernykh, M.L. Skorikov, E.B. Yakimov, L.A. Alexanyan, I.V. Shchemerov, A.A. Vasilev, and S.J. Pearton, Degradation by sidewall recombination centers in GaN blue micro-LEDs at diameters <30 µm. J. Alloys Compd. 921, 166072 (2022).

    Article  CAS  Google Scholar 

  34. R.J. Shul, L. Zhang, A.G. Baca, C.G. Willison, J. Han, S.J. Pearton, and F. Ren, Inductively coupled plasma-induced etch damage of GaN p-n junctions. J. Vac. Sci. Technol. A 18, 1139 (2000).

    Article  CAS  Google Scholar 

  35. P. Reddy, D. Khachariya, D. Szymanski, M.H. Breckenridge, B. Sarkar, S. Pavlidis, R. Collazo, Z. Sitar, and E. Kohn, Role of polarity in SiN on Al/GaN and the pathway to stable contacts. Semicond. Sci. Technol. 35, 055007 (2020).

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Partial funding for this project came from the National Natural Science Foundation of China (Grant Number: 61974149).

Author information

Authors and Affiliations

Authors

Contributions

H. Pal and S. Singh contributed equally to this work.

Corresponding author

Correspondence to Biplab Sarkar.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pal, H., Singh, S., Guo, C. et al. Lateral P–N Junction Photodiodes Using Lateral Polarity Structure GaN Films: A Theoretical Perspective. J. Electron. Mater. 52, 2148–2157 (2023). https://doi.org/10.1007/s11664-022-10166-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-022-10166-z

Keywords

Navigation