Skip to main content
Log in

Synthesis, Thermal, Optical, and Radiation-Absorbing Properties of Bi2O3-Li2O-As2O3-B2O3 Glasses

  • Original Research Article
  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

Borate glasses can be excellent optical and radiation-shielding glasses when they play host to Bi2O3 and Li2O. The extent of the physical, structural, optical, and radiation-absorbing property modifications of xBi2O3-(30-x)Li2O-10As2O3-60B2O3 glasses when the concentrations of Bi2O3 and Li2O are altered is presented in this report. Glasses xBi2O3-(30-x)Li2O-10As2O3-60B2O3 with x = 5 mol%, 10 mol%, 15 mol%, 20 mol%, and 25 mol% were fabricated by the melt-quench synthesis method using ultra-pure (GR grade) reagents. The amorphous structure of the prepared glasses was confirmed by XRD (x-ray diffraction) analysis, while the glass transition temperature (Tg), density, and optical transmission data were obtained following standard laboratory techniques. The glasses were characterized for gamma and fast neutron shielding competence by estimating their mass attenuation coefficient and fast neutron removal cross-section. The density and molar volume of the fabricated glasses increases with the Bi2O3 content, while on the other hand the oxygen packing density decreases. The current glass system has a Tg in the range 403–434°C. Evaluated optical parameters showed fluctuations dictated by the chemical compositions of the BLABx glasses. The absorption edge in the glasses shifts from 412 nm to 429 nm as the amount of Bi2O3 changes from 5 mol% to 25 mol%. Analysis of the gamma rays and fast neutron absorption quantities showed that the addition of Bi2O3 up to 25 mol% had opposing effects on the ability of the glasses to shield the two types of radiation. Also, the present glasses showed an overwhelming advantage in terms of radiation-shielding applications in comparison to many existing γ-radiation shields. They are thus recommended as environmentally attractive materials in the design and implementation of radiation protection structures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Data Availability

The manuscript is associated with all the requested data.

References

  1. A. Acikgoz, G. Demircan, D. Yılmaz, B. Aktas, S. Yalcin, and N. Yorulmaz, Structural, mechanical, radiation shielding properties and albedo parameters of alumina borate glasses: role of CeO2 and Er2O3. Mater. Sci. Eng. B 276, 115519 (2022).

    Article  CAS  Google Scholar 

  2. M.S. Al-Buriahi, Z.A. Alrowaili, S.J. Alsufyani, I.O. Olarinoye A.N. Alharbi, C. Sriwunkum, and I. Kebaili (2022) The role of PbF2 on the gamma-ray photon, charged particles, and neutron shielding prowess of novel lead fluoro bismuth borate glasses, J. Mater. Sci.: Mater. Electron. 33, 1123.

  3. Y. Al-Hadeethi, M.I. Sayyed, A.Z. Barasheed, M. Ahmed, and M. Elsafi, Fabrication of lead free borate glasses modified by bismuth oxide for gamma ray protection applications. Materials 15, 789 (2022).

    Article  CAS  Google Scholar 

  4. B. Alshahrani, Z.A. Alrowaili, S.J. Alsufyani, I.O. Olarinoye, C. Mutuwong, and M.S. Al-Buriahi, Determining the optical properties and simulating the radiation shielding parameters of Dy3+ doped lithium yttrium borate glasses. Optik 250, 168318 (2022).

    Article  CAS  Google Scholar 

  5. N. Alfryyan, Z.A. Alrowaili, H.H. Somaily, I.O. Olarinoye, N. Alwadai, C. Mutuwong, and M.S. Al-Buriahi, Comparison of radiation shielding and elastic properties of germinate tellurite glasses with the addition of Ga2O3. J. Taibah Univ. Sci. 16, 183 (2022).

    Article  Google Scholar 

  6. Y.S. Rammah, I.O. Olarinoye, F.I. El-Agawany, E.M. Ahmed, and W.M. Salem, Influence of Sm2O3 content on photon and fast neutron interaction parameters of zinc-tellurite glasses. Radiat. Phys. Chem. 192, 109914 (2022).

    Article  CAS  Google Scholar 

  7. M.S. Al-Buriahi, C. Eke, Z.A. Alrowaili, A.M. Al-Baradi, I. Kebaili, and B.T. Tonguc, Optical properties and radiation shielding performance of tellurite glasses containing Li2O and MoO3. Optik 249, 168257 (2022).

    Article  CAS  Google Scholar 

  8. J.S. Alzahrani, Z.A. Alrowaili, S.B. Ahmed, I.O. Olarinoye, C. Sriwunkum, and M.S. Al-Buriahi, P2O5–Pb3O4–ZnO–Li2CO3–CuO glasses and their radiation attenuation properties for shielding applications. J. Aust. Ceram. Soc. 58, 1219 (2022).

    Article  CAS  Google Scholar 

  9. Y.S. Rammah, K.A. Mahmoud, M.S. Sadeq, E. Haily, L. Bih, E.M. Ahmed, and F.I. El-Agawany, Optical and radiation shielding properties of titano-phosphate glasses: influence of BaO. J. Aust. Ceram. Soc. 58, 867 (2022).

    Article  CAS  Google Scholar 

  10. G. A. Alharshan, , C. Eke, Z.A. Alrowaili, S. Ben Ahmed, I.O. Olarinoye, M.S. Al-Buriahi, Influence of rare-earth ions on the radiation protection ability of Some optical glasses containing Bi2O3 and SiO2Optik, 169371 (2022).

  11. L.R.P. Kassab, S.A. Issa, and G.R. Mattos, Gallium (III) oxide reinforced novel heavy metal oxide (HMO) glasses: a focusing study on synthesis, optical and gamma-ray shielding properties. Ceram. Int. 48, 14261 (2022).

    Article  CAS  Google Scholar 

  12. M.I. Sayyed, M.F. Alrashedi, A.H. Almuqrin, and M. Elsafi, Recycling and optimizing waste lab glass with Bi2O3 nanoparticles to use as a transparent shield for photons. J. Market. Res. 17, 2073–2083 (2022).

    CAS  Google Scholar 

  13. M.S. Al-Buriahi, T. Kavas, E. Kavaz, R. Kurtulus, and I.O. Olarinoye, Recycling potential of cathode ray Tubes (CRTs) waste glasses Based on Bi2O3 addition strategies. Waste Manag. 148, 43 (2022).

    Article  CAS  Google Scholar 

  14. M.S. Eid, I.I. Bondouk, H.M. Saleh, K.M. Omar, and M.I. Sayyed, Implementation of waste silicate glass into composition of ordinary cement for radiation shielding applications. Nucl. Eng. Technol 54, 1456 (2022).

    Article  CAS  Google Scholar 

  15. N.Y. Abdou, N. El-Faramawy, and W.M. Abd-Allah, Dosimetric properties of potassium magnesium borate glass doped with copper. J. Mater. Sci. Mater. Electron. 33, 12927 (2022).

    Article  CAS  Google Scholar 

  16. M.H.A. Mhareb, M. Alqahtani, F. Alshahri, F., Y,SM. Alajerami, N. Saleh, N. Alonizan, M.I. Sayyed, M.G.B. Ashiq, T. Ghrib, S.I. Al-Dhafar, T. Alayed, T., The Impact of barium oxide on physical, structural, optical, and shielding features of sodium zinc borate glass. J. Non-Cryst. Solids 541, 120090 (2020).

  17. S.A. Issa, H.O. Tekin, R. Elsaman, O. Kilicoglu, Y.B. Saddeek, and M.I. Sayyed, Radiation shielding and mechanical properties of Al2O3-Na2O-B2O3-Bi2O3 glasses using MCNPX Monte Carlo code. Mater. Chem. Phys. 223, 209 (2019).

    Article  CAS  Google Scholar 

  18. S. A. Hashemi, M. Karimipourfard, S.M. Mousavi, S. Sina, S. Bahrani, N. Omidifar, S. Ramakrishna, M. Arjmand, Transparent sodium polytungstate polyoxometalate aquatic shields toward effective x-ray radiation protection: alternative to lead glasses. Mater. Today Commun. 103822 (2022).

  19. M.A. Alothman, R. Kurtulus, I.O. Olarinoye, T. Kavas, C. Mutuwong, and M.S. Al-Buriahi, Optical, elastic, and radiation shielding properties of Bi2O3-PbO-B2O3 glass system: a role of SnO2 addition. Optik 248, 168047 (2021).

    Article  CAS  Google Scholar 

  20. Y.B. Saddeek, E.R. Shaaban, and H.M. Moustafa, Spectroscopic properties, electronic polarizability, and optical basicity of Bi2O3–Li2O–B2O3 glasses. Physica B 403, 2399 (2008).

    Article  CAS  Google Scholar 

  21. G. Upender, S. Ramesh, M. Prasad, V.G. Sathe, and V.C. Mouli, Optical band gap, glass transition temperature and structural studies of (100–2x) TeO2–xAg2O–xWO3 glass system. J. Alloys Compd 504, 468 (2010).

    Article  CAS  Google Scholar 

  22. I. Kashif, A. Abd El-Maboud, and A. Ratep, Effect of Nd2O3 addition on structure and characterization of lead bismuth borate glass. Results in Phys 4, 1 (2014).

    Article  Google Scholar 

  23. E. A. Davis, N. Mott, Conduction in non-crystalline systems V. Conductivity, optical absorption and photoconductivity in amorphous semiconductors. Philos. Mag. Lett. 22, 0903. (1970).

  24. J. Tauc, and A. Menth, States in the gap. J. Non-Cryst. Solids 8, 569–585 (1972).

    Article  Google Scholar 

  25. F. Urbach, The long-wavelength edge of photographic sensitivity and of the electronic absorption of solids. Phys. Rev. 92, 1324 (1953).

    Article  CAS  Google Scholar 

  26. S. Stalin, A. Edukondalu, I. Boukhris, Z.A. Alrowaili, A.M. Al-Baradi, I.O. Olarinoye, D.K. Gaikwad, and M.S. Al-Buriahi, Effects of TeO2/B2O3 substitution on synthesis, physical, optical and radiation shielding properties of ZnO–Li2O-GeO2-Bi2O3 glasses. Ceram. Int. 47, 30137–30146 (2021).

    Article  CAS  Google Scholar 

  27. A. Edukondalu, B. Kavitha, M.A. Samee, S.K. Ahmmed, S. Rahman, and K.S. Kumar, Mixed alkali tungsten borate glasses–optical and structural properties. J. Alloys Compd 552, 157 (2013).

    Article  CAS  Google Scholar 

  28. J.A. Duffy, and M.D. Ingram, Establishment of an optical scale for Lewis basicity in inorganic oxyacids, molten salts, and glasses. J. Am. Chem. Soc. 93, 6448 (1971).

    Article  CAS  Google Scholar 

  29. V. Dimitrov, T. Komatsu, T. Effect of interionic interaction on the electronic polarizability, optical basicity and binding energy of simple oxides. J. Ceram. Soc. Japan, 107, 1012 (1999).

  30. V. Dimitrov, and T. Komatsu, Interionic interactions, electronic polarizability and optical basicity of oxide glasses. J. Ceram. Soc. Jpn 108, 330 (2000).

    Article  CAS  Google Scholar 

  31. J. Yamashita, and T. Kurosawa, The theory of the dielectric constant of ionic crystals III. J. Phys. Soc. Jpn 10, 610 (1955).

    Article  CAS  Google Scholar 

  32. Y.S. Rammah, I.O. Olarinoye, F.I. El-Agawany, A. El-Adawy, and A. Gamal, Elastic Moduli, photon, neutron, and proton shielding parameters of tellurite bismo-vanadate (TeO2–V2O5–Bi2O3) semiconductor glasses. Ceram. Int. 46, 25440 (2020).

    Article  CAS  Google Scholar 

  33. M.S. Al-Buriahi, J.S. Alzahrani, I.O. Olarinoye, H. Akyildirim, S. Alomairy, I. Kebaili, I., H.O. Tekin, C. Mutuwong, Role of heavy metal oxides on the radiation attenuation properties of newly developed TBBE-X glasses by computational methods. Phys. Scri., 96, 075302 (2021).

  34. A. Jamila, Z.A. Alrowaili, H. H. Somaily, S.J. Alsufyani, I. O. Olarinoye, C. Sriwunkum, S.B. Ahmed, B.T. Tonguç, M.S. Al-Buriahi, A broad analysis of directly and indirectly ionizing radiation interaction parameters of PbF2-CaF2-Bi2O3-B2O3-Cr2O3 glass system. Phys. Scri., 97, 075306 (2022).

  35. B. Speid Radiation-shielding glasses providing safety against electrical discharge and being resistant to discoloration. Google Patents (1991).

  36. I. Boukhris, M.S. Al-Buriahi, H. Akyildirim, A. Alalawi, and I. Kebaili, Chalcogenide glass-ceramics for radiation shielding applications. Ceram. Int. 46, 19385 (2020).

    Article  CAS  Google Scholar 

  37. B. Alshahrani, C. Eke, Z.A. Alrowaili, A.M. Al-Baradi, H.I. Alsaeedy, C. Mutuwong, and M.S. Al-Buriahi, Gamma, neutron, and charged-particles shielding properties of tellurite glass system containing Sb2O3 and V2O5. J. Mater. Sci. Mater. Electron. 32, 28275 (2021).

    Article  CAS  Google Scholar 

  38. M.S. Al-Buriahi, I.O. Olarinoye, B. Alshahrani, A.M. Al-Baradi, C. Mutuwong, and H. Arslan, Optical and gamma-ray absorption features of newly developed P2O5−Ce2O3−La2O3 glass system. Appl. Phys. A 127, 873 (2021).

    Article  CAS  Google Scholar 

  39. J.S. Alzahrani, Z.A. Alrowaili, H.H. Saleh, A.M. Al-Baradi, M.A. Alothman, and M.S. Al-Buriahi, A significant role of Tb2O3 on the optical properties and radiation shielding performance of Ga2O3–B2O3–Al2O3–GeO2 glasses. J. Inorg. Organomet. Polym. Mater. 31, 4300 (2021).

    Article  CAS  Google Scholar 

  40. I.I. Bashter, Calculation of radiation attenuation coefficients for shielding concretes. Ann. Nucl. Energy. 24, 1389–1401 (1997).

    Article  CAS  Google Scholar 

  41. M.S. Al-Buriahi, C. Eke, S. Alomairy, A. Yildirim, H.I. Alsaeedy, and C. Sriwunkum, Radiation attenuation properties of some commercial polymers for advanced shielding applications at low energies. Polym Adv Technol 32, 2386 (2021).

    Article  CAS  Google Scholar 

  42. M.S. Al-Buriahi, C. Sriwunkum, and I. Boukhris, X- and gamma-rays attenuation properties of DNA nucleobases by using FLUKA simulation code. Eur. Phys. J. Plus 136, 776 (2021).

    Article  CAS  Google Scholar 

  43. M.S. Al-Buriahi, M.I. Sayyed, R. Bantan, and Y. Al-Hadeethi Y, Nuclear radiation shielding characteristics of some natural rocks by using EPICS2017 library. Materials 14, 4669 (2021).

    Article  CAS  Google Scholar 

  44. J.S. Alzahrani, Nuclear shielding properties and buildup factors of Cr-based ferroalloys. Prog. Nucl. Energy 141, 103956 (2021).

    Article  CAS  Google Scholar 

  45. A.S. Altowyan, Alaa Hammoud, S. Al-Qaisi, Norah Alwadai, A.V. Lebedev, V.A. Klimenko, L.V. Vasileva, M. S. Al-Buriahi, Synthesis, XRD, UV-Vis spectra and photoluminescent properties of TeO2-based glasses doped with Yb3+ and Bi3+. Optik, 169808 (2022).

  46. M.S. Al-Buriahi, S. Jamila, H.H. Somaily, Z.A. Alrowaili, I.O. Olarinoye, and H.H. Saleh, Radiation shielding performance of Co2O3–TeO2–Li2O–ZrO2 glass–ceramics. J. Aust. Ceram. Soc. 58, 1199 (2022).

    Article  CAS  Google Scholar 

  47. A. Prakash, S.K. Mahamuda, S. Jamila, P. Alzahrani, K. Sailaja, M.S. Venkateswarlu, A.S. Rao, Z.A. Alrowaili, I.O. Olarinoye, and M.S. Al-Buriahi, Synthesis and characterization of B2O3–Bi2O3–SrO–Al2O3–PbO–Dy2O3 glass system: the role of Bi2O3/Dy2O3 on the optical, structural, and radiation absorption parameters. Mater. Res. Bull. 155, 111952 (2022).

    Article  CAS  Google Scholar 

  48. T. Piotrowski, Neutron shielding evaluation of concretes and mortars: a review. Constr Build Mater. 277, 122238 (2021).

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors express their gratitude to Princess Nourah bint Abdulrahman University Researchers Supporting Project number (PNURSP2022R16), Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia.

Author information

Authors and Affiliations

Authors

Contributions

All author have accpted full responsibility for the content of this manuscript and have given their approval to its submission.

Corresponding author

Correspondence to M. S. Al-Buriahi.

Ethics declarations

Conflict of Interest

The author declare that they have no conflict of interest.

Ethical Approval

This manuscrpit has not be published orunder consideration elsewhere.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kalyani, B., Altowyan, A.S., Edukondalu, A. et al. Synthesis, Thermal, Optical, and Radiation-Absorbing Properties of Bi2O3-Li2O-As2O3-B2O3 Glasses. J. Electron. Mater. 52, 569–582 (2023). https://doi.org/10.1007/s11664-022-10028-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-022-10028-8

Keywords

Navigation