Skip to main content
Log in

Two-Dimensional Nodal-Loop Semimetal in Monolayer Zn4C2

  • Original Research Article
  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

Nodal-loop semimetals are novel quantum materials that have attracted considerable research interest from scholars for their fascinating properties due to the band crossing characteristic. Nevertheless, nodal loop semimetals in two-dimensional (2D) lattices are quite rare. Here, we report our new discovery of a Zn4C2 monolayer with a P4/mmm symmetry tetragonal lattice that possesses a robust Dirac nodal-loop state, using first-principles calculations. Further calculations show that the gapless nodal-loop is protected by the horizontal mirror symmetry, which can be well maintained at external strains between -8% and 8%, and is also robust against the choice of Ueff for correlation effect and the choice of functional. The results of this paper reveal a new type of novel 2D Dirac nodal-loop material, which provides a new potential material for high-speed electronic devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. K.S. Novoselov, A.K. Geim, S.V. Morozov, D.-E. Jiang, Y. Zhang, S.V. Dubonos, I.V. Grigorieva, and A.A. Firsov, Electric field effect in atomically thin carbon films. Science 306, 666 (2004).

    Article  CAS  Google Scholar 

  2. S.Z. Butler, S.M. Hollen, L. Cao, Y. Cui, J.A. Gupta, H.R. Gutiérrez, T.F. Heinz, S.S. Hong, J. Huang, and A.F. Ismach, Progress, challenges, and opportunities in two-dimensional materials beyond graphene. ACS Nano 7, 2898 (2013).

    Article  CAS  Google Scholar 

  3. G.R. Bhimanapati, Z. Lin, V. Meunier, Y. Jung, J. Cha, S. Das, D. Xiao, Y. Son, M.S. Strano, and V.R. Cooper, Recent advances in two-dimensional materials beyond graphene. ACS Nano 9, 11509 (2015).

    Article  CAS  Google Scholar 

  4. K. Novoselov, O.A. Mishchenko, and O.A. Carvalho, 2D materials and van der Waals neterostructures. Neto AC. Science 353, 6298 (2016).

    Article  Google Scholar 

  5. A.C. Neto, F. Guinea, N.M. Peres, K.S. Novoselov, and A.K. Geim, The electronic properties of graphene. Rev. Mod. Phys. 81, 109 (2009).

    Article  Google Scholar 

  6. N. Armitage, E. Mele, and A. Vishwanath, Weyl and Dirac semimetals in three-dimensional solids. Rev. Mod. Phys. 90, 015001 (2018).

    Article  CAS  Google Scholar 

  7. A. Bansil, H. Lin, and T. Das, Colloquium: topological band theory. Rev. Mod. Phys. 88, 021004 (2016).

    Article  Google Scholar 

  8. C.-K. Chiu, J.C. Teo, A.P. Schnyder, and S. Ryu, Classification of topological quantum matter with symmetries. Rev. Mod. Phys. 88, 035005 (2016).

    Article  Google Scholar 

  9. A. Burkov, Giant planar hall effect in topological metals. Phys. Rev. B 96, 041110 (2017).

    Article  Google Scholar 

  10. H. Weng, X. Dai, and Z. Fang, Topological semimetals predicted from first-principles calculations. J. Phys. Condes. Matter 28, 303001 (2016).

    Article  Google Scholar 

  11. A. Burkov, Topological semimetals. Nat. Mater. 15, 1145 (2016).

    Article  CAS  Google Scholar 

  12. Z. Wang, Y. Sun, X. Chen, C. Franchini, G. Xu, H. Weng, X. Dai, and Z. Fang, Dirac semimetal and topological phase transitions in A3Bi (A = Na, K, Rb). Phys. Rev. B 85, 2202 (2012).

    Google Scholar 

  13. Z. Wang, H. Weng, Q. Wu, X. Dai, and Z. Fang, Three-dimensional Dirac semimetal and quantum transport in Cd3As2. Phys. Rev. B 88, 125427 (2013).

    Article  Google Scholar 

  14. X. Wan, A.M. Turner, A. Vishwanath, and S.Y. Savrasov, Topological semimetal and fermi-arc surface states in the electronic structure of pyrochlore iridates. Phys. Rev. B 83, 205101 (2011).

    Article  Google Scholar 

  15. G. Xu, H. Weng, Z. Wang, X. Dai, and Z. Fang, Chern semimetal and the quantized anomalous hall effect in HgCr2Se4. Phys. Rev. Lett. 107, 186806 (2011).

    Article  Google Scholar 

  16. Y. Chen, Y. Xie, S.A. Yang, H. Pan, F. Zhang, M.L. Cohen, and S. Zhang, Nanostructured carbon allotropes with Weyl-like loops and points. Nano Lett. 15, 6974 (2015).

    Article  CAS  Google Scholar 

  17. Y. Du, X. Bo, D. Wang, E.-J. Kan, C.-G. Duan, S.Y. Savrasov, and X. Wan, Emergence of topological nodal lines and type-II Weyl nodes in the strong spin-orbit coupling system InNb X2 (X = S, Se). Phys. Rev. B 96, 235152 (2017).

    Article  Google Scholar 

  18. Y. Kim, B.J. Wieder, C. Kane, and A.M. Rappe, Dirac line nodes in inversion-symmetric crystals. Phys. Rev. Lett. 115, 036806 (2015).

    Article  Google Scholar 

  19. S.-Y. Yang, H. Yang, E. Derunova, S.S. Parkin, B. Yan, and M.N. Ali, Symmetry demanded topological nodal-line materials. Adv. Phys. X 3, 1414631 (2018).

    Google Scholar 

  20. C. Fang, H. Weng, X. Dai, and Z. Fang, Topological nodal line semimetals. Chin. Phys. B 25, 117106 (2016).

    Article  Google Scholar 

  21. Q.-F. Liang, J. Zhou, R. Yu, Z. Wang, and H. Weng, Node-surface and node-line fermions from nonsymmorphic lattice symmetries. Phys. Rev. B 93, 085427 (2016).

    Article  Google Scholar 

  22. W. Wu, Y. Liu, S. Li, C. Zhong, Z.-M. Yu, X.-L. Sheng, Y. Zhao, and S.A. Yang, Nodal surface semimetals: theory and material realization. Phys. Rev. B 97, 115125 (2018).

    Article  CAS  Google Scholar 

  23. I. Belopolski, K. Manna, D.S. Sanchez, G. Chang, B. Ernst, J. Yin, S.S. Zhang, T. Cochran, N. Shumiya, and H. Zheng, Discovery of topological Weyl fermion lines and drumhead surface states in a room temperature magnet. Science 365, 1278 (2019).

    Article  CAS  Google Scholar 

  24. S.-Y. Xu, I. Belopolski, N. Alidoust, M. Neupane, G. Bian, C. Zhang, R. Sankar, G. Chang, Z. Yuan, and C.-C. Lee, Discovery of a Weyl fermion semimetal and topological Fermi arcs. Science 349, 613 (2015).

    Article  CAS  Google Scholar 

  25. M. Hirschberger, S. Kushwaha, Z. Wang, Q. Gibson, S. Liang, C.A. Belvin, B.A. Bernevig, R.J. Cava, and N.P. Ong, The Chiral anomaly and thermopower of Weyl fermions in the half-Heusler GdPtBi. Nat. Mater. 15, 1161 (2016).

    Article  CAS  Google Scholar 

  26. T.D. Son and Z.B. Spivak, Chiral anomaly and classical negative magnetoresistance of Weyl metals. Phys. Rev. B 88, 104412 (2013).

    Article  Google Scholar 

  27. J. Kumar, P. Kapoor, and P. Ahluwalia, Na3Bi: a robust material offering Dirac electrons for device applications. J. Electron. Mater. 44, 3215 (2015).

    Article  CAS  Google Scholar 

  28. H. Huang, J. Liu, D. Vanderbilt, and W. Duan, Topological nodal-line semimetals in alkaline-earth stannides, germanides, and silicides. Phys. Rev. B 93, 201114 (2016).

    Article  Google Scholar 

  29. H. Weng, Y. Liang, Q. Xu, R. Yu, Z. Fang, X. Dai, and Y. Kawazoe, Topological node-line semimetal in three-dimensional graphene networks. Phys. Rev. B 92, 045108 (2015).

    Article  Google Scholar 

  30. K. Kim, J. Seo, E. Lee, K.-T. Ko, B. Kim, B.G. Jang, J.M. Ok, J. Lee, Y.J. Jo, and W. Kang, Large anomalous hall current induced by topological nodal lines in a ferromagnetic van der Waals semimetal. Nat. Mater. 17, 794 (2018).

    Article  CAS  Google Scholar 

  31. S.-S. Wang, Z.-M. Yu, Y. Liu, Y. Jiao, S. Guan, X.-L. Sheng, and S.A. Yang, Two-dimensional nodal-loop half-metal in monolayer MnN. Phys. Rev. Mater. 3, 084201 (2019).

    Article  CAS  Google Scholar 

  32. C. Zhong, W. Wu, J. He, G. Ding, Y. Liu, D. Li, S.A. Yang, and G. Zhang, Two-dimensional honeycomb borophene oxide: strong anisotropy and nodal loop transformation. Nanoscale 11, 2468 (2019).

    Article  CAS  Google Scholar 

  33. S. Li, Y. Liu, S.-S. Wang, Z.-M. Yu, S. Guan, X.-L. Sheng, Y. Yao, and S.A. Yang, Nonsymmorphic-symmetry-protected hourglass Dirac loop, nodal line, and dirac point in bulk and monolayer X3SiTe6 (X = Ta, Nb). Phys. Rev. B 97, 045131 (2018).

    Article  CAS  Google Scholar 

  34. L. Jin, X. Zhang, Y. Liu, X. Dai, X. Shen, L. Wang, and G. Liu, Two-dimensional Weyl nodal-line semimetal in a d0 ferromagnetic K2N monolayer with a high curie temperature. Phys. Rev. B 102, 125118 (2020).

    Article  CAS  Google Scholar 

  35. R. Zhang, Z. Li, and J. Yang, Two-dimensional stoichiometric boron oxides as a versatile platform for electronic structure engineering. J. Phys. Chem. Lett. 8, 4347 (2017).

    Article  CAS  Google Scholar 

  36. B. Feng, B. Fu, S. Kasamatsu, S. Ito, P. Cheng, C.-C. Liu, Y. Feng, S. Wu, S.K. Mahatha, and P. Sheverdyaeva, Experimental realization of two-dimensional Dirac nodal line fermions in monolayer Cu2Si. Nat. Commun. 8, 1 (2017).

    Article  Google Scholar 

  37. B. Feng, R.-W. Zhang, Y. Feng, B. Fu, S. Wu, K. Miyamoto, S. He, L. Chen, K. Wu, and K. Shimada, Discovery of Weyl nodal lines in a single-layer ferromagnet. Phys. Rev. Lett. 123, 116401 (2019).

    Article  CAS  Google Scholar 

  38. P. Blöchl, O. Jepsen, and O. Andersen, Improved tetrahedron method for Brillouin-zone integrations. Phys. Rev. B 49, 16223 (1994).

    Article  Google Scholar 

  39. G. Kresse and D. Joubert, First-principles calculations of the vacancy formation energy in transition and noble metals. Phys. Rev. B 59, 1758 (1999).

    Article  CAS  Google Scholar 

  40. J.P. Perdew, K. Burke, and M. Ernzerhof, Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865 (1996).

    Article  CAS  Google Scholar 

  41. L. Meng, S. Ni, Y. Zhang, B. Li, X. Zhou, and W. Wu, Two-dimensional zigzag-shaped Cd2C monolayer with a desirable bandgap and high carrier mobility. J. Mater. Chem. C 6, 9175 (2018).

    Article  CAS  Google Scholar 

  42. F. Mouhat, and F.-X. Coudert, Necessary and sufficient elastic stability conditions in various crystal systems. Phys. Rev. B 90, 224104 (2014).

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (Grant No. 12004137), Shandong Provincial Natural Science Foundation (Grant No. ZR2020QA052), National Natural Science Foundation of China (Grant No. 11974145), Shandong Provincial Natural Science Foundation (Grant No. ZR2020ZD28).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Qiang Cao or Sheng-Shi Li.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xia, Q., Cao, Q., Li, SS. et al. Two-Dimensional Nodal-Loop Semimetal in Monolayer Zn4C2. J. Electron. Mater. 52, 477–482 (2023). https://doi.org/10.1007/s11664-022-10015-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-022-10015-z

Keywords

Navigation