Skip to main content
Log in

Transparent In/SeO2 Thin Film Transistors Designed for Gigahertz/Terahertz Technologies

  • Original Research Article
  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

Herein, thin films of selenium oxide are coated onto transparent indium substrates with thickness of 150 nm under vacuum pressure of 10–5 mbar. In/SeO2 optical receivers are structurally, optically and electrically characterized. Induced crystallization of tetragonal SeO2 showing homogeneous composition and continuous film formation is achieved via indium substrates. Indium thin films enhance the light absorbability and optical conductivity without altering the energy band gap of SeO2. Strong interaction between In and Se at the ultrathin interface of In/SeO2 led to the formation of a new second band gap of 0.92 eV relating to direct allowed transitions in InSe. Indium substrates increased the dielectric constant of SeO2 by more than four times, making SeO2 suitable for nonlinear optical applications. The terahertz cutoff frequency changed in the range of 0.9–14.0 THz. In-depth analysis of the optical conduction in In/SeO2 films showed that the films display drift mobility, plasmon frequency and free carrier density values that render In/SeO2 a suitable candidate for fabrication of thin film transistors. The transistors displayed microwave resonator features presented by double band stop filters. The filters showed return loss values larger than 20 dB and voltage standing wave ratios of 1.0 at 1.16 GHz. A negative capacitance effect is also observed for the transistors under study.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data Availability Statement

The data that support the findings of this study are available from the corresponding author upon reasonable request.

References

  1. J. Abhiram, R. Rajaramakrishna, Y. Ruangtaweep, and J. Kaewkhao, Effect of SnO2 and SeO2 in Non-Linear Optical Properties of Au Nanoparticle Doped Self-Striking Red Ruby Glasses. Thai J. Nanosc. Nanotechnol. 4, 12 (2019).

    Google Scholar 

  2. P. Naresh, M. Kostrzewa, M.G. Brik, N. Venkatramaiah, V.R. Kumar, N. Krishna Mohan, V. Ravi Kumar, M. Piasecki, and N. Veeraiah, Emission Features of Er3+ Ions in an Exotic SeO2 Based Glass System. J. Non-Cryst Solids 556, 120558 (2021).

    Article  CAS  Google Scholar 

  3. P. Naresh, V.R. Kumar, A.S.S. Reddy, M. Kostrzewa, N. Venkatramaiah, N.K. Mohan, V.R. Kumar, and N. Veeraiah, Studies on Near Infrared Emission of Yb3+ Ions in a SeO2 Based Glass System. Physica B 606, 412827 (2021).

    Article  CAS  Google Scholar 

  4. P. S. Sirkeli and H. L. Hartnagel, ZnO for Infrared and Terahertz Applications. Nanostruct. Zinc Oxide, 639 (2021).

  5. L. Alfhaid and A.F. Qasrawi, Pt/SeO2 Optical Receivers Designed for Terahertz and 5G/6G Technologies. Phys. Scripta 97, 055820 (2022).

    Article  Google Scholar 

  6. S.R. Alharbi and S.E. Algarni, Growth and Characterization of (Glass, Ag)/SeO2 Thin Films. Physica B Condens. Matter 633, 413790 (2022).

    Article  CAS  Google Scholar 

  7. T.K. Nguyen, S. Aberoumand, and D.V. Dao, Advances in Si and SiC Materials for High-Performance Supercapacitors Toward Integrated Energy Storage Systems. Small 17, 2101775 (2021).

    Article  CAS  Google Scholar 

  8. M.A. Mohiddon, M.G. Krishna, G. Dalba, and F. Rocca, Transmission Electron Microscopy Study of Ni-Si Nanocomposite Films. Mater. Sci. Eng. B 177, 1108 (2012).

    Article  CAS  Google Scholar 

  9. C.C. Naik and M. Fernando, Nanocrystalline Indium-Substituted Copper Ferrite: Preparation, Optical, and Dielectric Studies. J. Mater. Sci. Mater. El. 33, 4330 (2022).

    Article  CAS  Google Scholar 

  10. Q. Zheng, C. Liang, J. Jiang, and S. Li, Elastic Properties and Deformation Mechanisms in the van der Waals Single-Crystalline Indium Selenide. Phys. Status Solidi R. 16, 2100418 (2022).

    Article  CAS  Google Scholar 

  11. A.F. Qasrawi, H.K. Khanfar, and S.B. Alyat, Design and Characterization of Yb/ p-SiO2/(Yb, In) Thin-Film Transistors for 5G Resonators. Braz. J. Phys. 52, 1 (2022).

    Article  Google Scholar 

  12. M. Wang, C. Wang, Y. Tian, J. Zhang, C. Guo, X. Zhang, and Q. Liu, Study on Optical and Electric Properties of Ultrafine-Grained Indium Films. Appl. Surf. Sci. 296, 209 (2014).

    Article  CAS  Google Scholar 

  13. K.N. Bagal, L.K. Bagal, I.S. Mulla, and S.S. Suryavanshi, Influence of Cu, Ce-Doping on Gas Sensing Properties of Nanocrystalline SnO2 Thick Films. Int. J. Chem. Phys. Sci.Special Issue–NCETNN (Dec) 3, 25 (2014).

    Google Scholar 

  14. M. Dresselhaus, G. Dresselhaus, S.B. Cronin, and A.G.S. Filho, Solid State properties (Alemania: Springer-Verlag, 2018).

    Book  Google Scholar 

  15. M. Di Giulio, D. Manno, R. Rella, P. Siciliano, and A. Tepore, Effects of Thermal Annealing on Optical Absorption of Amorphous Indium Selenide Thin Films. Sol. Energy. Mater. 15, 209 (1987).

    Article  Google Scholar 

  16. S.R. Tamalampudi, R. Sankar, H. Apostoleris, M.A. Almahri, B. Alfakes, A. Al-Hagri, R. Li, A. Gougam, I. Almansouri, M. Chiesa, and J.Y. Lu, Thickness-Dependent Resonant Raman and E′ Photoluminescence Spectra of Indium Selenide and Indium Selenide/Graphene Heterostructures. J. Phys. Chem. C 123, 15345 (2019).

    Article  CAS  Google Scholar 

  17. R. Vaish and K.B.R. Varma, Dielectric Relaxation in SrLiB9O15 Glasses. J. Electrochem. Soc. 156, G17 (2009).

    Article  CAS  Google Scholar 

  18. E.O. Nazzal, A.F. Qasrawi, and S.R. Alharbi, Engineering the Optical and Dielectric Properties of the Ga2S3/In/Ga2S3 Nanosandwiches Via Indium Layer Thickness. Plasmonics 13, 1049 (2018).

    Article  CAS  Google Scholar 

  19. J.A.R. Ramón, D.L. Sánchez, M.H. Zaldívar, and U. Pal, Morphology and Defect Evolution in Vapor-Grown In2O3: Sn Micro-/Nanoparticles. Mat. Sci. Semicon. Proc. 40, 943 (2015).

    Article  Google Scholar 

  20. P. Schwerdtfeger and J.K. Nagle, 2018 Table of Static Dipole Polarizabilities of the Neutral Elements in the Periodic Table. Mol. Phys. 117, 1200 (2019). https://doi.org/10.1080/00268976.2018.1535143.

    Article  CAS  Google Scholar 

  21. G. Jo, W.K. Hong, J. Maeng, T.W. Kim, G. Wang, A. Yoon, S.S. Kwon, S. Song, and T. Lee, Structural and Electrical Characterization of Intrinsic n-Type In2O3 Nanowires. Colloid Surf. A. 313, 308 (2008).

    Article  Google Scholar 

  22. B. Shaik, J.H. Han, D.J. Song, H.M. Kang, Y.B. Kim, C.E. Park, and S.G. Lee, Synthesis of Donor–Acceptor Copolymer using Benzoselenadiazole as Acceptor for OTFT. RSC Adv. 6, 4070 (2016).

    Article  CAS  Google Scholar 

  23. N. Novkovski and A. Tanuševski, Origin of the Optical Absorption of In2O3 Thin Films in the Visible Range. Semicond. Sci. Tech. 23, 095012 (2008).

    Article  Google Scholar 

  24. Y. Zhao, X. Li, C. Gai, C. Liu, T. Qi, B. Hu, X. Hu, W. Chen, M. Helaoui, and F.M. Ghannouchi, Theory and Design Methodology for reverse-Modulated Dual-Branch Power Amplifiers Applied to a 4G/5G Broadband GaN MMIC PA Design. IEEE T. Microw. Theory 69, 3120 (2021).

    Article  Google Scholar 

  25. S. Sanctis, Multinary metal oxide semiconductors-A study of different material systems and their application in thin-film transistors PH. D. dissertation, der Technischen Universität Darmstadt (2019).

  26. S. Dhara, K. Thakar, S. Ghosh, A. Varghese, S. Mahapatra, and S. Lodha, Comparative evaluation of vdW materials based PN junction and FET for gas sensing, in 2019 Device research conference (DRC), pp. 117–118. IEEE.‏ (2019).

  27. A.F. Qasrawi and N.M. Yaseen, Design and Characterization of MoO3/In2Se3 Heterojunctions as Terahertz/Gigahertz Band Filters Suitable for Visible Light Communications and 3G/4G Technologies. Phys. Scripta 96, 125819 (2021).

    Article  Google Scholar 

  28. S. Das, Low-temperature solution-processed metal oxide semiconductors for large-area electronics (London: Imperial College London, 2019).

    Google Scholar 

  29. A. Ray and R. Narasimman, Transparent Conducting Electrodes for Optoelectronic Devices: State-of-the-art and Perspectives. Mater. Solar Cell Technol. II 103, 77 (2021).

    CAS  Google Scholar 

  30. M. Tarasov, A. Gunbina, A. Chekushkin, V. Vdovin, and A. Kalaboukhov, Arrays of Sub-Terahertz Cryogenic Metamaterial. Appl. Sci. 11, 9649 (2021).

    Article  Google Scholar 

  31. S.E. Al Garni and A.F. Qasrawi, Characterization of Bi2O3/ZnS Heterojunctions Designed for Visible Light Communications. Mater. Res. Express 6, 036205 (2018).

    Article  Google Scholar 

  32. H. Zhang, T. Abdiryim, R. Jamal, J. Li, H. Liu, A. Kadir, D. Zou, Y. Che, and N. Serkjan, Self-Powered TiO2 NRs UV Photodetectors: Heterojunction with PTTh and Enhanced Responsivity by Au Nanoparticles. J. Alloy Compd. 899, 163279 (2022).

    Article  CAS  Google Scholar 

  33. A.F. Qasrawi and N.M. Yaseen, Yb/MoO3/In2Se3/Ag Sensors Designed as Tunneling Diodes, MOSFETs, Microwave Resonators, Laser Sensors, and VLC Receivers Suitable for 4G/5G and VLC Technologies. IEEE T. Electron. Dev. 68, 6444 (2021).

    Article  CAS  Google Scholar 

  34. A. Khayatian, M.A. Kashi, R. Azimirad, S. Safa, and S.F.A. Akhtarian, Effect of Annealing Process in Tuning of Defects in ZnO Nanorods and Their Application in UV Photodetectors. Optik 127, 4675 (2016).

    Article  CAS  Google Scholar 

  35. A. Thyssen, K. Almdal, and E.V. Thomsen, Electret Stability Related to the Crystallinity in Polypropylene. IEEE T. Dielect. El. In. 24, 3038 (2017).

    Article  CAS  Google Scholar 

  36. A. C. D. Silva, Structure and percolation of bioglasses, in Biocompatible glasses, pp. 49–84. (Springer: Cham, 2016).

  37. A.F. Qasrawi and A.N.A. Ghannam, Optical and Electrical Dynamics at the In/CuSe Interfaces. Optik 252, 168505 (2022).

    Article  CAS  Google Scholar 

  38. D.M. Pozar, Microwave engineering, 4th ed., (New York: Wiley, 2011).

    Google Scholar 

  39. H. Laaouane, S. Bri, and J. Foshi, Design of a Low Noise Amplifier Based on E-PHEMT Transistors for 4G Applications. J. Comput. Sci. Inf. Tech. 5, 41 (2021).

    Google Scholar 

  40. J. Gao and W. Zhang, A Design of compact tri-band antenna for 4G/5G/WLAN application, in 2021 2nd International Seminar on Artificial Intelligence, Networking and Information Technology (AINIT), pp. 25–28. IEEE, (2021).

  41. K. Adaikalam, S. Valanarasu, A.M. Ali, M.A. Sayed, W. Yang, and H.-S. Kim, Photosensing Effect of Indium-Doped ZnO Thin Films and Its Heterostructure with Silicon. J. Asian Ceram. Soc. 10, 108 (2022).

    Article  Google Scholar 

  42. A.M. Aboraia, M. Ezzeldien, H. Elhosiny Ali, I.S. Yahia, Y. Khairy, V. Ganesh, A.V. Soldatov, and E.R. Shaaban, Influence of the Indium on the Structure and the Optical Properties of the ZnO Thin Film: Kramer-Kronig Relation and the Spectroscopic Ellipsometry. Mater. Lett. 283, 128783 (2021).

    Article  CAS  Google Scholar 

  43. S. Debnath, M.R. Islam, and M.S.R. Khan, Optical Properties of CeO2 Thin Films. Bull. Mater. Sci. 30, 315 (2007).

    Article  CAS  Google Scholar 

  44. Ch. Hsu, J. Lin, Y. He, S. Yang, P. Yang, and W. Chen, Optical, Electrical Properties and Reproducible Resistance Switching of GeO2 Thin Films by Sol–Gel Process. Thin Solid Films 519, 5033 (2011).

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This project was funded by the Deanship of Scientific Research (DSR), Arab American University, Palestine, and by the DSR of Istinye University, Istanbul, Turkey. The authors, therefore, gratefully acknowledge the DSR for technical and financial support.

Funding

This study was funded by the Deanship of Scientific Research (DSR) of Arab American University, Palestine, and by Istinye university, Istanbul, TR.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. F. Qasrawi.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qasrawi, A.F., Daragme, R.B. Transparent In/SeO2 Thin Film Transistors Designed for Gigahertz/Terahertz Technologies. J. Electron. Mater. 51, 5617–5626 (2022). https://doi.org/10.1007/s11664-022-09834-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-022-09834-x

Keywords

Navigation