Skip to main content
Log in

Investigation of Electronic Properties and Dielectric Response of Two-Dimensional Germanium Selenide with Puckered and Buckled Structures

  • Original Research Article
  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

Utilizing first-principles calculations, the structural, electronic and optical properties of two-dimensional germanium selenide (GeSe) with puckered and buckled structures are investigated. The electronic properties investigations reveal that the buckled GeSe monolayer has an indirect band gap of 2.38 eV and the puckered GeSe monolayer has a direct band gap of 1.15 eV. Applying biaxial strain significantly alters the electronic properties of the puckered and buckled GeSe monolayers. In the buckled GeSe monolayer, the band gap decreases by applying tensile or compressive strain, but for the puckered GeSe monolayer, it becomes zero for − 6% strain and increases to 1.49 eV when strain increases to + 6%. In the presence of the compressive strain and −6% strain, the puckered GeSe structure shows direct to indirect band gap and semiconductor to metal transitions, respectively. Both materials show a wide range of light absorption covering some part of the visible spectrum.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Z. Hu, Y. Ding, X. Hu, W. Zhou, X. Yu, and S. Zhang, Recent Progress in 2D Group IV–IV Monochalcogenides: Synthesis, Properties and Applications. Nanotechnology 30, 252001 (2019).

    Article  CAS  Google Scholar 

  2. C. Chowdhury, S. Karmakar, and A. Datta, Monolayer Group IV–VI Monochalcogenides: Low-Dimensional Materials for Photocatalytic Water Splitting. J. Phys. Chem. C 121, 7615–7624 (2017).

    Article  Google Scholar 

  3. L.C. Gomes and A. Carvalho, Phosphorene Analogues: Isoelectronic Two-dimensional Group-IV Monochalcogenides with Orthorhombic Structure. Phys. Rev. B 92, 085406 (2015).

    Article  Google Scholar 

  4. S.R. Tamalampudi, S. Patole, B. Alfakes, R. Sankar, I. Almansouri, M. Chiesa, and J.-Y. Lu, High-Temperature Defect-Induced Hopping Conduction in Multilayered Germanium Sulfide for Optoelectronic Applications in Harsh Environments. ACS Appl. Nano Mater. 2, 2169–2175 (2019).

    Article  CAS  Google Scholar 

  5. D. Tan, H.E. Lim, F. Wang, N.B. Mohamed, S. Mouri, W. Zhang, Y. Miyauchi, M. Ohfuchi, and K. Matsuda, Anisotropic Optical and Electronic Properties of Two-Dimensional Layered Germanium Sulfide. Nano Res. 10, 546–555 (2017).

    Article  CAS  Google Scholar 

  6. A.K. Tołłoczko, S.J. Zelewski, M. Błaszczak, T. Woźniak, A. Siudzińska, A. Bachmatiuk, P. Scharoch, and R. Kudrawiec, Optical Properties of Orthorhombic Germanium Selenide: An Anisotropic Layered Semiconductor Promising for Optoelectronic Applications. J. Mater. Chem. C (2021). https://doi.org/10.1039/D1TC04280G.

    Article  Google Scholar 

  7. B. Mukherjee, Y. Cai, H.R. Tan, Y.P. Feng, E.S. Tok, and C.H. Sow, NIR Schottky Photodetectors Based on Individual Single-Crystalline GeSe Nanosheet. ACS Appl. Mater. Interfaces. 5, 9594–9604 (2013).

    Article  CAS  Google Scholar 

  8. C. Li, L. Huang, G.P. Snigdha, Y. Yu, and L. Cao, Role of Boundary Layer Diffusion in Vapor Deposition Growth of Chalcogenide Nanosheets: The Case of GeS. ACS Nano 6, 8868–8877 (2012).

    Article  CAS  Google Scholar 

  9. J.R. Brent, D.J. Lewis, T. Lorenz, E.A. Lewis, N. Savjani, S.J. Haigh, G. Seifert, B. Derby, and P. O’Brien, Tin(II) Sulfide (SnS) Nanosheets by Liquid-Phase Exfoliation of Herzenbergite: IV–VI Main Group Two-Dimensional Atomic Crystals. J. Am. Chem. Soc. 137, 12689–12696 (2015).

    Article  CAS  Google Scholar 

  10. D.-J. Xue, J. Tan, J.-S. Hu, W. Hu, Y.-G. Guo, and L.-J. Wan, Anisotropic Photoresponse Properties of Single Micrometer-Sized GeSe Nanosheet. Adv. Mater. 24, 4528–4533 (2012).

    Article  CAS  Google Scholar 

  11. Y. Gao, L. Zhang, G. Yao, and H. Wang, Unique Mechanical Responses of Layered Phosphorus-Like Group-IV Monochalcogenides. J. Appl. Phys. 125, 082519 (2019).

    Article  Google Scholar 

  12. T. Hu and J. Dong, Two New Phases of Monolayer Group-IV Monochalcogenides and Their Piezoelectric Properties. Phys. Chem. Chem. Phys. 18, 32514–32520 (2016).

    Article  CAS  Google Scholar 

  13. F.Q. Wang, S. Zhang, J. Yu, and Q. Wang, Thermoelectric Properties of Single-Layered SnSe Sheet. Nanoscale 7, 15962–15970 (2015).

    Article  CAS  Google Scholar 

  14. P.-F. Liu, T. Bo, J. Xu, W. Yin, J. Zhang, F. Wang, O. Eriksson, and B.-T. Wang, First-Principles Calculations of the Ultralow Thermal Conductivity in Two-Dimensional Group-IV Selenides. Phys. Rev. B 98, 235426 (2018).

    Article  CAS  Google Scholar 

  15. D.-J. Xue, S.-C. Liu, C.-M. Dai, S. Chen, C. He, L. Zhao, J.-S. Hu, and L.-J. Wan, GeSe Thin-Film Solar Cells Fabricated by Self-Regulated Rapid Thermal Sublimation. J. Am. Chem. Soc. 139, 958–965 (2017).

    Article  CAS  Google Scholar 

  16. X. Song, W. Zhou, X. Liu, Y. Gu, and S. Zhang, Layer-Controlled Band Alignment, Work Function and Optical Properties of Few-Layer GeSe. Physica B 519, 90–94 (2017).

    Article  CAS  Google Scholar 

  17. L.C. Gomes, A. Carvalho, and A.H. Castro Neto, Enhanced Piezoelectricity and Modified Dielectric Screening of Two-Dimensional Group-IV Monochalcogenides. Phys. Rev. B 92, 214103 (2015).

    Article  Google Scholar 

  18. Y. Guo, S. Zhou, Y. Bai, and J. Zhao, Oxidation Resistance of Monolayer Group-IV Monochalcogenides. ACS Appl. Mater. Interfaces. 9, 12013–12020 (2017).

    Article  CAS  Google Scholar 

  19. L.C. Gomes, A. Carvalho, and A.H. Castro Neto, Vacancies and Oxidation of Two-Dimensional Group-IV Monochalcogenides. Physical Review B 94, 054103 (2016).

    Article  Google Scholar 

  20. G. Wang, W.J. Slough, R. Pandey, and S.P. Karna, Degradation of Phosphorene in Air: Understanding at Atomic Level. 2D Materials 3, 025011 (2016).

    Article  Google Scholar 

  21. A. Ziletti, A. Carvalho, P.E. Trevisanutto, D.K. Campbell, D.F. Coker, and A.H. Castro Neto, Phosphorene Oxides: Bandgap Engineering of Phosphorene by Oxidation. Phys. Rev. B 91, 085407 (2015).

    Article  Google Scholar 

  22. S. Ma, D. Yuan, Y. Wang, and Z. Jiao, Monolayer GeS as a Potential Candidate for NO2 Gas Sensors and Capturers. J. Mater. Chem. C 6, 8082–8091 (2018).

    Article  CAS  Google Scholar 

  23. L. Xu, M. Yang, S.J. Wang, and Y.P. Feng, Electronic and Optical Properties of the Monolayer Group-IV Monochalcogenides M X (M= Ge, Sn; X= S, Se, Te). Phys. Rev. B 95, 235434 (2017).

    Article  Google Scholar 

  24. F. Li, X. Liu, Y. Wang, and Y. Li, Germanium Monosulfide Monolayer: A Novel Two-Dimensional Semiconductor with a High Carrier Mobility. J. Mater. Chem. C 4, 2155–2159 (2016).

    Article  CAS  Google Scholar 

  25. S.-C. Liu, Y. Mi, D.-J. Xue, Y.-X. Chen, C. He, X. Liu, J.-S. Hu, and L.-J. Wan, Investigation of Physical and Electronic Properties of GeSe for Photovoltaic Applications. Adv. Electron. Mater. 3, 1700141 (2017).

    Article  Google Scholar 

  26. C. Xia, J. Du, W. Xiong, Y. Jia, Z. Wei, and J. Li, A Type-II GeSe/SnS Heterobilayer with a Suitable Direct Gap, Superior Optical Absorption and Broad Spectrum for Photovoltaic Applications. J. Mater. Chem. A 5, 13400–13410 (2017).

    Article  CAS  Google Scholar 

  27. P. Sutter and E. Sutter, Growth Mechanisms of Anisotropic Layered Group IV Chalcogenides on van der Waals Substrates for Energy Conversion Applications. ACS Appl. Nano Mater. 1, 3026–3034 (2018).

    Article  CAS  Google Scholar 

  28. D. Gu, X. Tao, H. Chen, W. Zhu, Y. Ouyang, and Q. Peng, Enhanced Photocatalytic Activity for Water Splitting of Blue-Phase GeS and GeSe Monolayers Via Biaxial Straining. Nanoscale 11, 2335–2342 (2019).

    Article  CAS  Google Scholar 

  29. Y. Ji, M. Yang, H. Dong, T. Hou, L. Wang, and Y. Li, Two-Dimensional Germanium Monochalcogenide Photocatalyst for Water Splitting Under Ultraviolet, Visible to Near-Infrared Light. Nanoscale 9, 8608–8615 (2017).

    Article  CAS  Google Scholar 

  30. P. Zhao, H. Yang, J. Li, H. Jin, W. Wei, L. Yu, B. Huang, and Y. Dai, Design of New Photovoltaic Systems Based on Two-Dimensional Group-IV Monochalcogenides for High Performance Solar Cells. J. Mater. Chem. A 5, 24145–24152 (2017).

    Article  CAS  Google Scholar 

  31. T.P. Kaloni, G. Schreckenbach, M.S. Freund, and U. Schwingenschlögl, Current developments in silicene and germanene. Physica Status Solidi (RRL) Rapid Res. Lett. 10, 133–142 (2016).

    Article  CAS  Google Scholar 

  32. M. Wu and X.C. Zeng, Intrinsic Ferroelasticity and/or Multiferroicity in Two-Dimensional Phosphorene and Phosphorene Analogues. Nano Lett. 16, 3236–3241 (2016).

    Article  CAS  Google Scholar 

  33. P. Ramasamy, D. Kwak, D.-H. Lim, H.-S. Ra, and J.-S. Lee, Solution Synthesis of GeS and GeSe Nanosheets for High-Sensitivity Photodetectors. J. Mater. Chem. C 4, 479–485 (2016).

    Article  CAS  Google Scholar 

  34. Y. Zhou, MX (M = Ge, Sn; X = S, Se) Sheets: Theoretical Prediction of New Promising Electrode Materials for Li ion Batteries. J. Mater. Chem. A 4, 10906–10913 (2016).

    Article  CAS  Google Scholar 

  35. A. Sannyal, Z. Zhang, X. Gao, and J. Jang, Two-Dimensional Sheet of Germanium Selenide as an Anode Material for Sodium and Potassium Ion Batteries: First-Principles Simulation Study. Comput. Mater. Sci. 154, 204–211 (2018).

    Article  CAS  Google Scholar 

  36. S. Behzad, Strain-Induced Band Gap Tuning in α-Graphyne on Its Boron Nitride Analog Substrate. Eur. Phys. J. B 92, 7 (2019).

    Article  Google Scholar 

  37. S. Behzad, Strain Engineering of Band Dispersion and Dielectric Response of Monolayer and Bilayer AlN. J. Comput. Electron. 17, 514–520 (2018).

    Article  CAS  Google Scholar 

  38. S. Zhang, N. Wang, S. Liu, S. Huang, W. Zhou, B. Cai, M. Xie, Q. Yang, X. Chen, and H. Zeng, Two-Dimensional GeS with Tunable Electronic Properties via External Electric Field and Strain. Nanotechnology 27, 274001 (2016).

    Article  Google Scholar 

  39. L. Huang, F. Wu, and J. Li, Structural Anisotropy Results in Strain-Tunable Electronic and Optical Properties in Monolayer GeX and SnX (X = S, Se, Te). J. Chem. Phys. 144, 114708 (2016).

    Article  Google Scholar 

  40. H. Wang and X. Qian, Two-dimensional multiferroics in monolayer group IV monochalcogenides. 2D Materials 4, 015042 (2017).

    Article  Google Scholar 

  41. Y.-L. Zhu, Y. Junhui, Y.-Q. Song, S. Wang, K.-H. Xue, M. Xu, X.-M. Cheng, X.-S. Miao, Two-Dimensional Silicon Chalcogenides with High Carrier Mobility for Photocatalytic Water Splitting. J. Mater. Sci. 54 (2019).

  42. H.R. Jiang, T.S. Zhao, M. Liu, M.C. Wu, and X.H. Yan, Two-Dimensional SiS as a Potential Anode Material for Lithium-Based Batteries: A First-Principles Study. J. Power Sources 331, 391–399 (2016).

    Article  CAS  Google Scholar 

  43. C. Kamal, A. Chakrabarti, and M. Ezawa, Direct Band Gaps in Group IV–VI Monolayer Materials: Binary Counterparts of Phosphorene. Phys. Rev. B 93, 125428 (2016).

    Article  Google Scholar 

  44. J. Yujin, M. Yang, H. Dong, T. Hou, L. Wang, Y. Li, Two-Dimensional Germanium Monochalcogenide Photocatalyst for Water Splitting under Ultraviolet, Visible to Near-infrared Light. Nanoscale, 9 (2017).

  45. Y. Xu, K. Xu, H. Zhang, First-Principles Calculations of Angular and Strain Dependence on Effective Masses of Two-Dimensional Phosphorene Analogues (Monolayer α-Phase Group-IV Monochalcogenides MX), Molecules (Basel, Switzerland), 2019.

  46. K.S. Novoselov and A.H. Castro Neto, Two-Dimensional Crystals-Based Heterostructures: Materials with Tailored Properties. Physica Scripta T146, 014006 (2012).

    Article  Google Scholar 

  47. M. Ghorbani-Asl, S. Borini, A. Kuc, and T. Heine, Strain-Dependent Modulation of Conductivity in Single Layer Transition-Metal Dichalcogenides. Phys. Rev. B 87, 235434 (2013).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Somayeh Behzad.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Behzad, S., Chegel, R. Investigation of Electronic Properties and Dielectric Response of Two-Dimensional Germanium Selenide with Puckered and Buckled Structures. J. Electron. Mater. 51, 6275–6285 (2022). https://doi.org/10.1007/s11664-022-09817-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-022-09817-y

Keywords

Navigation