Skip to main content
Log in

Nanocrystalline Spinel CoFe2O4 Thin Films Deposited via Microwave-Assisted Synthesis for Sensing Application

  • Original Research Article
  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

This work describes and demonstrates the fabrication of nanocrystalline CoFe2O4 thin films deposited over an oxidised silicon substrate, in a solution medium at ∼ 110°C, via a simple microwave-assisted synthesis process. Films were characterised by x-ray diffraction, scanning electron microscopy, atomic force microscopy, x-ray photoelectron spectroscopy, FTIR and Raman spectroscopy. A platinum electrode was patterned to form the sensor device using optical lithography. The CoFe2O4 sensor so fabricated displays excellent sensitivity to SO2 at a concentration of 3.5 ppm yielding a 350% response at 120°C, with rapid response (10 s) and recovery (20 s), and with a detection limit of 250 ppb. In addition, the film has very good selectivity over H2S, NH3, NO2, and CH4. The work illustrates the potential advantage of nanocrystalline ferrite thin films for the detection of toxic gases at low detection limits and at a moderate sensor temperature.

Graphical Abstract

Cobalt Ferrite Thin films for SO2 sensing at sub-ppm concentration with quick responses and recovery

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. K. Wu, J. Li, and C. Zhang, Zinc Ferrite Based Gas Sensors: A Review. Ceram. Int. 45, 11143 (2019).

    Article  CAS  Google Scholar 

  2. M. Amiri, M.S. Niasari, and A. Akbari, Magnetic Nanocarriers: Evolution of Spinel Ferrites for Medical Applications. Adv. Colloid Interface Sci. 265, 29 (2019).

    Article  CAS  Google Scholar 

  3. P. Rao, R.V. Godbole, D.M. Phase, R.C. Chikate, and S. Bhagwat, Ferrite Thin Films: Synthesis, Characterization and Gas Sensing Properties Towards LPG. Mater. Chem. Phys. 149, 333 (2015).

    Article  CAS  Google Scholar 

  4. R. Valenzuela, Novel Applications of Ferrites. Phys. Res. Int. 2012, 9 (2012).

    Article  CAS  Google Scholar 

  5. A. Šutka and K.A. Gross, Spinel Ferrite Oxide Semiconductor Gas Sensors. Sens. Actuators B Chem. 222, 95 (2016).

    Article  CAS  Google Scholar 

  6. A. Singh, A. Singh, S. Singh, P. Tandon, B.C. Yadav, and R.R. Yadav, Synthesis, Characterization and Performance of Zinc Ferrite Nanorods for Room Temperature Sensing Applications. J. Alloys Compd. 618, 475 (2015).

    Article  CAS  Google Scholar 

  7. S.B. Narang and K. Pubby, Nickel Spinel Ferrites: A review. J. Magn. Magn. Mater. 519, 167163 (2021).

    Article  CAS  Google Scholar 

  8. M.A.H. Khan, M.V. Rao, and Q. Li, Recent Advances in Electrochemical Sensors for Detecting Toxic Gases: NO2, SO2 and H2S. Sensors 19, 905 (2019).

    Article  CAS  Google Scholar 

  9. K. Wetchakuna, T. Samerjai, N. Tamaekong, C. Liewhiran, C. Siriwong, V. Kruefu, A. Wisitsoraat, A. Tuantranont, and S. Phanichphant, Semiconducting Metal Oxides as Sensors for Environmentally Hazardous Gases. Sens. Actuators B Chem. 160, 580 (2011).

    Article  CAS  Google Scholar 

  10. M. Nonomura and T. Hobo, Simultaneous Determination of Sulphur Oxides, Nitrogen Oxides and Hydrogen Chloride in flue Gas by Means of an Automated Ion Chromatographic System. J. Chromatogr. A 804, 151 (1998).

    Article  CAS  Google Scholar 

  11. Y. Zhang, Y. Wang, Y. Liu, X. Dong, H. Xia, Z. Zhang, and J. Li, Simultaneous H2S and SO2 Sensor Based on Chemical Conversion and Partition Differential Optical Absorption Spectroscopy. Spectrochim. Acta A Mol. Biomol. 210, 120 (2019).

    Article  CAS  Google Scholar 

  12. F. Liu, Y. Wang, B. Wang, X. Yang, Q. Wang, X. Liang, P. Sun, X. Chuai, Y. Wang, and G. Lu, Stabilized Zirconia-Based Mixed Potential Type Sensors Utilizing MnNb2O6 Sensing Electrode for Detection of Low-Concentration SO2. Sens. Actuators B Chem. 238, 1024 (2017).

    Article  CAS  Google Scholar 

  13. L. Wang and R.V. Kumar, A New SO2 Gas Sensor Based on an Mg2+ Conducting Solid Electrolyte. J. Electroanal. Chem. 543–2, 109 (2003).

    Article  CAS  Google Scholar 

  14. R. Lalauze, N. Bui, and C. Pijolat, Interpretation of the Electrical Properties of a SnO2 Gas Sensor After Treatment with Sulfur Dioxide. Sens. Actuators B Chem 6, 2–119 (1984).

    Google Scholar 

  15. B. Yuliarto, M.F. Ramadhani, Nugraha, N.L.W. Septiani, and K.A. Hamam, Enhancement of SO2 Gas Sensing Performance Using ZnO Nanorod Thin Films: The Role of Deposition Time. J Mater Sci 52, 4543 (2017).

    Article  CAS  Google Scholar 

  16. D. Zhang, J. Liu, C. Jiang, P. Li, and Y. Sun, High-Performance Sulfur Dioxide Sensing Properties of Layer-by-Layer Self-Assembled Titania-Modified Graphene Hybrid Nanocomposite. Sens. Actuators B Chem 245, 560 (2017).

    Article  CAS  Google Scholar 

  17. C.S. Prajapati, S. Benedict, and N. Bhat, An Ultralow Power Nanosensor Array for Selective Detection of Air Pollutants. Nanotechnology 31, 025301 (2020).

    Article  CAS  Google Scholar 

  18. A. Queraltó, D. Graf, R. Frohnhoven, T. Fischer, H. Vanrompay, S. Bals, A. Bartasyte, and S. Mathur, LaFeO3 Nanofibers for High Detection of Sulfur-Containing Gases. ACS Sustain. Chem. 7, 6023 (2019).

    Article  CAS  Google Scholar 

  19. R. Godbole, V. Godbole, and S. Bhagwat, Palladium Enriched Tungsten Oxide Thin Films: An Efficient Gas Sensor for Hazardous Gases. Eur. Phys. J. B 92, 78 (2019).

    Article  CAS  Google Scholar 

  20. C. Aranthady, T. Jangid, K. Gupta, A.K. Mishra, S.D. Kaushik, V. Siruguri, G.M. Rao, G.V. Shanbhag, and N.G. Sundaram, Selective SO2 Detection at Low Concentration by Ca Substituted LaFeO3 Chemiresistive Gas Sensor: A Comparative Study of LaFeO3 Pellet vs Thin Film. Sens. Actuators B Chem. 329, 129211 (2021).

    Article  CAS  Google Scholar 

  21. A.B. Gadkari, T.J. Shinde, and P.N. Vasambekar, Ferrite Gas Sensors. IEEE Sensors 11, 849 (2011).

    Article  CAS  Google Scholar 

  22. L.J. Zhou, X.X. Zhang, and W.Y. Zhang, Sulfur Dioxide Sensing Properties of MOF-Derived ZnFe2O4 Functionalized with Reduced Graphene Oxide at Room Temperature. Rare Met. 40, 1604 (2021).

    Article  CAS  Google Scholar 

  23. S. Dhaka, S. Kumar, K. Poonia, V. Singh, K. Dhaka, and H.S. Mund, Effect of Annealing Temperature on Structural and Magnetic Properties of Nano-Cobalt Ferrite. J Mater Sci: Mater Electron. 32, 16392 (2021).

    CAS  Google Scholar 

  24. E. Swatsitang, S. Phokha, S. Hunpratub, B. Usher, A. Bootchanont, S. Maensiri, and P. Chindaprasirt, Characterization and Magnetic Properties of Cobalt Ferrite Nanoparticles. J. Alloys Compd. 664, 792 (2016).

    Article  CAS  Google Scholar 

  25. A.A. Sattar, H. El-Sayed, and I.A. Alsuqia, Structural and Magnetic Properties of CoFe2O4/NiFe2O4 Core/Shell Nanocomposite Prepared by the Hydrothermal Method. J. Magn. Magn. Mater. 395, 89 (2015).

    Article  CAS  Google Scholar 

  26. Z. Mahhouti, H.E. Moussaoui, T. Mahfoud, M. Hamedoun, M.E. Marssi, A. Lahmar, A.E. Kenz, and A. Benyoussef, Chemical Synthesis and Magnetic Properties of Monodisperse Cobalt Ferrite Nanoparticles. J Mater Sci: Mater Electron. 30, 14913 (2019).

    CAS  Google Scholar 

  27. P. Halvaee, S. Dehghani, and S. Hoghoghifard, Low Temperature Methanol Sensors Based on Cobalt Ferrite Nanoparticles, Nanorods, and Porous Nanoparticles. IEEE Sens. J. 20, 4056 (2020).

    Article  CAS  Google Scholar 

  28. P.I. Devi, N. Rajkumar, B. Renganathan, D. Sastikumar, and K. Ramachandran, Ethanol Gas Sensing of Mn-Doped CoFe2O4 Nanoparticles. IEEE Sens. J. 11–6, 1395 (2011).

    Article  CAS  Google Scholar 

  29. A.A. Bagade and K.Y. Rajpure, Development of CoFe2O4 Thin Films for Nitrogen Dioxide Sensing at Moderate Operating Temperature. J. Alloys Compd. 657, 414 (2016).

    Article  CAS  Google Scholar 

  30. T. Krishnakumar, N. Pinna, K.P. Kumari, K. Perumal, and R. Jayaprakash, Microwave-Assisted Synthesis and Characterization of Tin Oxide Nanoparticles. Mater. Lett. 62, 3437 (2008).

    Article  CAS  Google Scholar 

  31. S. Majeed and S.A. Shivashankar, Rapid, Microwave-Assisted Synthesis of Gd2O3 and Eu:Gd2O3 Nanocrystals: Characterization, Magnetic, Optical and Biological Studies. J. Mater. Chem. B2, 5585 (2014).

    Google Scholar 

  32. S. Brahma, C. Liu, and S.A. Shivashankar, Microwave Irradiation Assisted, One Pot Synthesis of Simple and Complex Metal Oxide Nanoparticles: a General Approach. J. Phys. D: Appl. Phys. 50, 40LT03 (2017).

    Article  CAS  Google Scholar 

  33. R.D.R. Kahmei, S. Arackal, S.A. Shivashankar, N. Bhat, and R. Sai, The Impact of Solvent tanδ on the Magnetic Characteristics of Nanostructured Ni-Zn-Ferrite Film Deposited by Microwave-Assisted Solvothermal Technique. AIP Adv. 11, 025003 (2021).

    Article  CAS  Google Scholar 

  34. A. Kumar, Y. Kuang, Z. Liang, and X. Sun, Microwave Chemistry, Recent Advancements and Eco-Friendly Microwave-Assisted Synthesis of Nanoarchitectures and Their Applications: A Review. Mater. Today Nano 11, 100076 (2020).

    Article  Google Scholar 

  35. I. Bilecka and M. Niederberger, Microwave Chemistry for Inorganic Nanomaterials Synthesis. Nanoscale 2, 1358 (2010).

    Article  CAS  Google Scholar 

  36. S. Brahma and S.A. Shivashankar, Microwave Irradiation-Assisted Method for the Deposition of Adherent Oxide Films on Semiconducting and Dielectric Substrates. Thin Solid Films 518, 5905 (2010).

    Article  CAS  Google Scholar 

  37. R. Sai, S. Arackal, R.D.R. Kahmei, N. Bhat, M. Yamaguchi, and S.A. Shivashankar, Crystallographic Inversion-Mediated Superparamagnetic Relaxation in Zn-Ferrite Nanocrystals. AIP Adv. 10, 015101 (2020).

    Article  CAS  Google Scholar 

  38. W.P. Wang, H. Yang, T. Xian, and J. Jiang, XPS and Magnetic Properties of CoFe2O4 Nanoparticles Synthesized by a Polyacrylamide Gel Route. Mater. Trans. 53, 1586 (2012).

    Article  CAS  Google Scholar 

  39. Z. Zhou, Y. Zhang, Z. Wang, W. Wei, W. Tang, J. Shi, and R. Xiaong, Electronic Structure Studies of the Spinel CoFe2O4 by X-Ray Photoelectron Spectroscopy. Appl. Surf. Sci. 254, 6972 (2008).

    Article  CAS  Google Scholar 

  40. N. Sangeneni, K.M. Taddei, N. Bhat, and S.A. Shivashankar, Magnetic Properties of Superparamagnetic, Nanocrystalline Cobalt Ferrite Thin Films Deposited at Low Temperature. J. Magn. Magn. Mater. 465, 590–597 (2018).

    Article  CAS  Google Scholar 

  41. Y.C. Wang, J. Ding, J.B. Yi, B.H. Liu, T. Yu, and Z.X. Shen, High-Coercivity Co-Ferrite Thin on (100)-SiO2 Substrate. Appl Phys. Lett. 84, 2596 (2004).

    Article  CAS  Google Scholar 

  42. R.S. Yadav, I. Kuřitka, J. Vilcakova, J. Havlica, J. Masilko, L. Kalina, J. Tkacz, J. Švec, V. Enev, and M. Hajdúchová, Impact of Grain Size and Structural Changes on Magnetic, Dielectric, Electrical, Impedance and Modulus Spectroscopic Characteristics of CoFe2O4 Nanoparticles Synthesized by Honey Mediated Sol-Gel Combustion Method. Adv. Nat. Sci.: Nanosci. Nanotechnol. 8, 045002 (2017).

    Google Scholar 

  43. P. Chandramohan, M.P. Srinivasan, S. Velmurugan, and S.V. Narasimhan, Cation Distribution and Particle Size Effect on Raman Spectrum of CoFe2O4. J. Solid State Chem. 184, 89 (2011).

    Article  CAS  Google Scholar 

  44. B.K. Prashant, B.S. Sandeep, S.K. Jitendra, S.D. Suraj, P.K. Pankaj, and K.M. Jadhav, Temperature Dependent Viscosity of Cobalt Ferrite/Ethylene Glycol Ferrofluids. AIP Conf Proc 1942, 050044 (2018).

    Article  CAS  Google Scholar 

  45. S.B. Madake, J.B. Thorat, and K.Y. Rajpure, Spray Deposited Multimetal Cu-Ni-Zn Ferrite for Gas Sensing Application. Sens. Actuator A Phys. 331, 112919 (2021).

    Article  CAS  Google Scholar 

  46. C. Wang, L. Yin, L. Zhang, D. Xiang, and R. Gao, Metal Oxide Gas Sensors: Sensitivity and Influencing Factors. Sensors 10, 2088 (2010).

    Article  CAS  Google Scholar 

  47. M.S. Raghavan and S.A. Shivashankar, High-Sensitivity Detection of H2S by In2O3/C Composite Prepared by Inert-Ambient Sealed-Tube Pyrolysis. SN Appl. Sci. 1, 719 (2019).

    Article  CAS  Google Scholar 

  48. Y. Liu, Y. Zhang, J.D. Feng, C.F. Li, J. Shi, and R. Xiong, Dependence of Magnetic Properties on Crystallite Size of CoFe2O4 Nanoparticles Synthesised by Auto-Combustion Method. J. Exp. Nanosci. 4, 159 (2009).

    Article  CAS  Google Scholar 

  49. A.F. Gil, O. Benavides, S.M. Vargas, L.D.L.C. May, and C.P. Carachure, Synthesis and Characterization of Cobalt Ferrite Cox Fe3-x O4 Nanoparticles by Raman Spectroscopy and x-Ray Diffraction. Int. J. Metall. Met. Phys. 5, 047 (2020).

    Google Scholar 

Download references

Acknowledgments

The authors acknowledge that much of this work was carried out in the Centre for Nano Science and Engineering (CeNSE), IISc, with assistance from the National Nano Fabrication Centre (NNFC) and the Micro Nano Characterization Facility (MNCF), which are supported by the Govt. of India through MeitY, MoE, and the DST. The authors thank the staff of NNFC and MNCF for the help they provided.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Srinidhi Raghavan.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 142 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Umesh, S., Usha, A., Bailey, K. et al. Nanocrystalline Spinel CoFe2O4 Thin Films Deposited via Microwave-Assisted Synthesis for Sensing Application. J. Electron. Mater. 51, 5395–5404 (2022). https://doi.org/10.1007/s11664-022-09789-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-022-09789-z

Keywords

Navigation