Skip to main content
Log in

Influence Analysis of Back-Barrier and AIN Substrate on the High-Temperature Performance of an E-Mode Mg-Doped In0.2Ga0.8N Capped Gate High Electron Mobility Transistor for High-Power Switching Applications: A Simulation Study

  • Original Research Article
  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

This work presents an investigation of the performance assessment of E-mode Mg-doped In0.2Ga0.8N/Al0.23Ga0.77N/GaN/Al0.05Ga0.95N on AIN substrate use for high-power applications. The effect of the back-barrier on AIN substrate to boost the high-temperature performance of the device was analyzed using a hybrid technique of finite element simulations in the physics-based Synopsys TCAD 2018 simulation tool. The back-barrier on the AIN substrate improves the performance of the device through the improvement of electron mobility with increasing temperature. The proposed device’s maximum transconductance gm of 47 mS/mm at room temperature was significantly reduced to 16.1 mS/mm at a high temperature of 673 K by the AIN substrate and back-barrier interfacial layers. Boosted current flow of Vds = +15 V from +4 V was observed. A record off-state thermal breakdown voltage of 1200 V at a temperature of 673 K was achieved with the device. An appreciable high ratio of ION/IOFF for both devices at high temperatures was observed. There was no significant difference between up and down sweeps of the threshold voltage due to ohmic resistance. FE simulation indicated both AIN substrate and back-barrier interfacial layers had very small gate-drain turn-on voltages due to the limited threshold voltage (Vth). Consistent variation of GaN channel temperature from 329 K to 550 K for power dissipation from 1 to 10 W/mm with AIN substrate and back-barrier interfacial layers was observed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. X. Huang, Q. Li, Z. Liu, and F.C. Lee, Analytical Loss Model of High Voltage GaN HEMT in Cascode Configuration. IEEE Trans. Power Electron. 29, 2208–2219 (2014). https://doi.org/10.1109/TPEL.2013.2267804.

    Article  Google Scholar 

  2. Joel T. Asubar, Zenji Yatabe, and Tamotsu Hashizume, Reduced Thermal Resistance in AlGaN/GaN Multi-Mesa-Channel High Electron Mobility Transistors. Appl. Phys. Lett. 105, 053510 (2014). https://doi.org/10.1063/1.4892538.

    Article  CAS  Google Scholar 

  3. Ali M. Darwish, Andrew Bayba, and H.A. Hung, Channel Temperature Analysis of GaN HEMTs with Nonlinear Thermal Conductivity. IEEE Trans. Electron Devices. 62, 840–846 (2015). https://doi.org/10.1109/TED.2015.2396035.

    Article  CAS  Google Scholar 

  4. Z. Wang and J. Honea, IEEE Workshop on Wide Bandgap Power Devices and Applications (WiPDA); 81–87 (2014)

  5. A. Nigam, T.N. Bhat, S. Rajamanan, S. Tripathy, and M. Kumar, Effect of Self-Heating on Electrical Characteristics of AlGaN/GaN HEMT on Si (111) Substrate. AIP Adv. 7, 085015 (2017). https://doi.org/10.1063/1.4990868.

    Article  CAS  Google Scholar 

  6. H. Amano, Y. Baines, E. Beam, and Matteo Borga, The 2018 GaN Power Electronics Roadmap. J. Phys. D Appl. Phys. 51, 163001 (2018). https://doi.org/10.1088/1361-6463/aaaf9d.

    Article  CAS  Google Scholar 

  7. A. Chvála, J. Marek, P. Príbytný, A. Šatka, M. Donoval, and D. Donoval, Effective 3-D Device Electrothermal Simulation Analysis of Influence of Metallization Geometry on Multifinger Power HEMTs Properties. IEEE Tran. Elec. Dev. 1, 64 (2017). https://doi.org/10.1109/TED.2016.2629024.

    Article  Google Scholar 

  8. S. de Filippis, V. Košel, D. Dibra, S. Decker, H. Köck, and A. Irace, ANSYS Based 3D Electro-Thermal Simulations for the Evaluation of Power MOSFETs Robustness. Microelectron. Rel. 51, 1954–1958 (2011). https://doi.org/10.1016/j.microrel.2011.06.047.

    Article  Google Scholar 

  9. V. Košel, S. de Filippis, L. Chen, S. Decker, and A. Irace, FEM Simulation Approach to Investigate Electro-Thermal Behavior of Power Transistors in 3-D. Microelectron. Rel. 53, 356–362 (2013). https://doi.org/10.1016/j.microrel.2012.09.002.

    Article  Google Scholar 

  10. D. Chvála, A. Donoval, M. Šatka, J. Molnár, and P.. Príbytn.ý Marek, Advanced Methodology for Fast 3-D TCAD Device/Circuit Electro-Thermal Simulation and Analysis of Power HEMTs. IEEE Trans. Elec. Dev. 62, 828–834 (2015). https://doi.org/10.1109/TED.2015.2395251.

    Article  CAS  Google Scholar 

  11. TCAD Sentaurus. Sdevice User Guide, Synopsys ver.G-2018.

  12. Franck Nallet, Luca Silvestri, Tommaso Cilento (2014) TCAD simulation methodology for electrothermal analysis of discrete devices including package. In: Proceedings 26th Int. Symp. Pow Semicon Devi & IC's Waikoloa, Hawaii https://doi.org/10.1109/ISPSD.2014.6856044

  13. Takayuki Sugiyama, Hiroshi Amano, Daisuke Iida, Motoaki Iwaya, Satoshi Kamiyama, and Isamu Akasaki, High-Temperature Operation of Normally Off-Mode AlGaN/GaN Heterostructure Field-Effect Transistors with p-GaN Gate. Japanese J. Appl. Phys. 50, 01AD03 (2011).

    Article  Google Scholar 

  14. N. Yafune, S. Hashimoto, K. Akita, Y. Yamamoto, H. Tokuda, and M. Kuzuhara, AlN/AlGaN HEMTs on AlN Substrate for Stable High Temperature Operation. Electron. Lett. 50, 211–212 (2014). https://doi.org/10.1049/el.2013.2846.

    Article  CAS  Google Scholar 

  15. Yusuf U. Tarauni, D. John Thiruvadigal, Bijo Joseph, and A. Mohanbabu, Optimization of Enhancement Mode P-type Mg-Doped In0.2Ga0.8 N Cap Gate for Low-Loss High Power Efficient Boost Converter Circuits. Mater. Sci. Semicond. Process. 103, 104624 (2019).

    Article  CAS  Google Scholar 

  16. Albert G. Bacaz, Brianna A. Klein, Andrew A. Allerman, and Andrew M. Armstrong, Al0.85Ga0.15N/Al0.70Ga0.30N High Electron Mobility Transistors with Schottky Gates and Large On/Off Current Ratio over Temperature. ECS J Solid State Sci. Technol. (2017). https://doi.org/10.1149/2.0231712jss.

    Article  Google Scholar 

  17. R. Sommet, G. Mouginot, R. Quéré, Z. Ouarch, and M. Camiade, Thermal Modeling and Measurements of AlGaN/GaN HEMTs Including Thermal Boundary Resistance. Microelectr. J. 43, 611–617 (2012).

    Article  CAS  Google Scholar 

  18. Guowang Li, Tom Zimmerman, and Yu. Cao, Threshold Voltage Control in Al0.72Ga0.28N/AlN/GaN HEMTs by Work-Function Engineering. IEEE Electron Device Let 31, 954–956 (2010). https://doi.org/10.1109/LED.2010.2052912.

    Article  CAS  Google Scholar 

  19. T. Nanjo, A. Imai, Y. Suzuki, Y. Abe, T. Oishi, M. Suita, and Y. Tokuda, AlGaN Channel HEMT with Extremely High Breakdown Voltage. IEEE Trans Electron Devices 60, 1046–1053 (2013).

    Article  CAS  Google Scholar 

  20. T. Nanjo, M. Takeuchi, M. Suita, T. Oishi, Y. Abe, Y. Tokuda, and Y. Aoyagi, Remarkable Breakdown Voltage Enhancement in AlGaN Channel High Electron Mobility Transistors. Appl. Phys. Lett. 92, 263502 (2008). https://doi.org/10.1063/1.2949087.

    Article  CAS  Google Scholar 

  21. M. Hatano, N. Yafune, H. Tokuda, Y. Yamamoto, S. Hashimoto, K. Akita, and M. Kuzuhara, Superior DC and RF Performance of AlGaN-Channel HEMT at High Temperatures. IEICE Trans. Electr. 95, 1332–1336 (2012).

    Article  Google Scholar 

  22. Lu. Xing, Huaxing Jiang, Chao Liu, Xinbo Zou, and Kei May Lau, Off-State Current Leakage Reduction in AlGaN/GaN High Electron Mobility Transistor by Combining Surface Treatment and Post-Gate Annealing. Semi. Cond. Sci. Technol. 31, 055019 (2016).

    Article  Google Scholar 

  23. S.K. Powell, N. Goldsman, J.M. McGarrity, J. Bernstein, C.J. Scozzie, and A. Lelis, Physics-Based Numerical Modeling and Characterization of 6H-Silicon-Carbide Metal–Oxide–Semiconductor Field-Effect Transistors. J. Appl. Phys. 92, 4053–4061 (2002).

    Article  CAS  Google Scholar 

  24. G. Bastard, Wave mechanics applied to semiconductor heterostructures (New York: John Wiley & Sons, 1990).

    Google Scholar 

  25. S. Schoche, P. Kuhne, T. Hofmann, M. Schubert, D. Nilsson, A. Kakanakova-Georgieva, E. Janzen, and V. Darakchieva, Electron Effective Mass in Al0.72Ga0.28N Alloys Determined by Mid-Infrared Optical Hall Effect. Appl. Phys. Lett. 103, 212107 (2013). https://doi.org/10.1063/1.4833195.

    Article  CAS  Google Scholar 

  26. F.F. Fang, and W.E. Howard, Negative Field-Effect Mobility on (100) Si Surfaces. Phys. Rev. Lett. 16, 797 (1966).

    Article  Google Scholar 

  27. J.H. Davies, The physics of low-dimensional semiconductors (Cambridge: Cambridge University Press, 1998).

    Google Scholar 

  28. S.B. Lisesivdin, A. Yildiz, N. Balkan, M. Kasap, S. Ozcelik, and E. Ozbay, Scattering Analysis of Two-Dimensional Electrons in AlGaN/GaN with Bulk Related Parameters Extracted by Simple Parallel Conduction Extraction Method. J. Appl. Phys. 108, 013712 (2010).

    Article  Google Scholar 

  29. B.L. Gelmont, M. Shur, and M. Stroscio, Polar Optical-Phonon Scattering in Threeand Two-Dimensional Electron Gases. J. Appl. Phys. 77, 657 (1995).

    Article  CAS  Google Scholar 

  30. M.E. Coltrin, and R.J. Kaplar, Transport and Breakdown Analysis for Improved Figure-of-Merit for AlGaN Power Devices. J. Appl. Phys. 121, 055706 (2017). https://doi.org/10.1063/1.4975346.

    Article  CAS  Google Scholar 

  31. M.E. Coltrin, A.G. Baca, and R.J. Kaplar, Analysis of 2D Transport and Performance Characteristics for Lateral Power Devices Based on AlGaN Alloys. ECS J. Solid State Sci. Technol. 6, S3114–S3118 (2017). https://doi.org/10.1149/2.0241711jss.

    Article  CAS  Google Scholar 

  32. D. Maier, M. Alomari, N. Grandjean, J.F. Carlin, M.A. Diforte-Poisson, C. Dua, and E. Kohn, Testing the Temperature Limits of GaN-Based HEMT Devices. IEEE Trans. Device and Mater Reliability 10, 427–436 (2010).

    Article  CAS  Google Scholar 

  33. B.J. Baliga, Modern power devices (New York: Wiley-Interscience, 1987).

    Google Scholar 

  34. F. Bertoluzza, N. Delmonte, and R. Menozzi, Three-Dimensional Finite Element Thermal Simulation of GaN-based HEMTs. Microelectron. Reliability. 49, 468–473 (2009). https://doi.org/10.1016/j.microrel.2009.02.009.

    Article  CAS  Google Scholar 

  35. E.A. Douglas, F. Ren, and S.J. Pearton, Finite-Element Simulations of the Effect of Device Design on Channel Temperature for AlGaN/GaN High Electron Mobility Transistors. J. Vacuum Sci. Technol. B 29, 020603 (2011).

    Article  Google Scholar 

  36. M. Fish, P. McCluskey, and A. Bar-Cohen, Modeling of Thermal Microspreading Resistance in Via Arrays. J. Electron. Packag. 138, 010909 (2016). https://doi.org/10.1115/1.4032348.

    Article  Google Scholar 

  37. H. Huang, Y.C. Liang, G.S. Samudra, T.F. Chang, and C.F. Huang, Effects of Gate Field Plates on the Surface State Related Current Collapse in AlGaN/GaN HEMTs. IEEE Trans. Power Electr. 29, 2164–2173 (2013).

    Article  Google Scholar 

  38. Jo Das, Herman Oprins, Hangfeng, Andrei Sarua and Gustaaf Borghs (2006) A Temperature Analysis of High-Power ALGAN/GAN HEMTS. In: Dans Proceedings of 12th International Workshop on Thermal investigations of ICs-Therminic, Nice France. arXiv:0709.1868v1

  39. Patrick H. Carey, Fan Ren, Albert G. Baca, and Stephen J. Pearton, Operation Up to 500C of Al0.85Ga0.15N/Al0.7Ga0.3N High Electron Mobility Transistors. J. Electron Device Soc. 9, 444–452 (2019). https://doi.org/10.1109/JEDS.2019.2907306.

    Article  Google Scholar 

  40. Y.U. Tarauni, D.J. Thiruvadigal, and H.B. Joseph, Characterization and Optimization of MIS-HEMTs Device of High~ k Dielectric Material on Quaternary Barrier of Al0. 42ln0. 03Ga0. 55N/UID-AIN/GaN/GaN Heterostructure for High Power Switching Application. Appl. Surf. Sci. 488, 427–433 (2019).

    Article  CAS  Google Scholar 

Download references

Acknowledgment

The authors gratefully acknowledge the support from the Centre for Material Science and Nanodevices, Department of Physics & Nanotechnology, Faculty of Engineering and Technology, SRM Institute of Science & Technology, Chennai, India, and the Department of Physics, Kano University of Science & Technology, Wudil, for providing all facilities to carry out this research work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yusuf U. Tarauni.

Ethics declarations

Conflict of Interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tarauni, Y.U., Thiruvadigal, D.J., Hotoro, M. et al. Influence Analysis of Back-Barrier and AIN Substrate on the High-Temperature Performance of an E-Mode Mg-Doped In0.2Ga0.8N Capped Gate High Electron Mobility Transistor for High-Power Switching Applications: A Simulation Study. J. Electron. Mater. 51, 5219–5229 (2022). https://doi.org/10.1007/s11664-022-09767-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-022-09767-5

Keywords

Navigation