Skip to main content
Log in

Crystallographic and Optical Characteristics of Ultraviolet-Stimulated Dy3+-Doped Ba2GdV3O11 Nanorods

  • Original Research Article
  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

A ultraviolet-triggered white light-emitting Ba2Gd1−xV3O11:xDy3+ nanophosphor series has been developed with the aid of urea-fueled solution combustion route, for the first time. Powder x-ray diffraction and Rietveld refinement have been utilized to study the structural features of the synthesized series. Transmission electron microscopy (TEM), field emission scanning electron microscopy (FE-SEM), and energy-dispersive spectroscopy (EDS) analysis have been employed for morphological and elemental analysis. When triggered by ultraviolet radiation at 324 nm, the Dy3+-doped nanophosphor exhibited characteristic peaks attributed to emissions due to 4F9/26H13/2, 15/2 transitions. The concentration quenching phenomenon was witnessed for the 3 mol% fluorescent composition in Dy3+-doped Ba2GdV3O11 nanophosphor. The Auzel’s model has been of great usage in determining the values for intrinsic lifetime (1.112 ms) and non-radiative rates (421.178 s−1). The efficient and cool conduct of the white light-emitting nanophosphor series has been endorsed by the CIE color coordinates (x = 0.256, y = 0.341), correlated color temperature (CCT = 9751 K), and quantum efficiency value (67%). The structural and photoluminescence behavior featured by the trivalent dysprosium-doped Ba2GdV3O11 nanophosphor support its usage in ultraviolet-stimulated lighting devices.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. N.C. George, K.A. Denault, and R. Seshadri, Phosphors for Solid-State White Lighting. Annu. Rev. Mater. Res. 43, 481 (2013).

    Article  CAS  Google Scholar 

  2. A.K. Bedyal, V. Kumar, O.M. Ntwaeaborwa, and H.C. Swart, A promising Orange-Red Emitting Nanocrystalline NaCaBO3: Sm3+ Phosphor for solid State Lightning. Mater. Res. Express. 1, 015006 (2014).

    Article  CAS  Google Scholar 

  3. Z. Xu, C. Li, Z. Hou, C. Peng, and J. Lin, Morphological Control and Luminescence Properties of Lanthanide Orthovanadate LnVO4(Ln = La to Lu) Nano-/Microcrystals via Hydrothermal Process. CrystEngComm 13, 474 (2011).

    Article  CAS  Google Scholar 

  4. Q. Zhao, Y. Zheng, N. Guo, Y. Jia, H. Qiao, W. Lv, and H. You, 3D-Hierarchical Lu2O2S: Eu3+ Micro/Nano-Structures: Controlled Synthesis and Luminescence Properties. CrystEngComm 14, 6659 (2012).

    Article  CAS  Google Scholar 

  5. F.B. Xiong, C.Y. Han, H.F. Lin, Y.P. Wang, H.Y. Lin, H.X. Shen, and W.Z. Zhu, White Light Emission from Novel Host-Sensitized Single-Phase Y2WO6: Ln3+ (Ln3+=Eu3+, Dy3+) Phosphors. Ceram. Int. 42, 13841 (2016).

    Article  CAS  Google Scholar 

  6. H. Hafez, M. Saif, and M.S.A. Abdel-Mottaleb, Down-Converting Lanthanide Doped TiO2 Photoelectrodes for Efficiency Enhancement of Dye-Sensitized Solar Cells. J. Power Sources. 196, 5792 (2011).

    Article  CAS  Google Scholar 

  7. K. Li, and R. Van Deun, Photoluminescence and Energy Transfer Properties of a Novel Molybdate KBaY(MoO4)3: Ln3+ (Ln3+ = Tb3+, Eu3+, Sm3+, Tb3+/Eu3+, Tb3+ /Sm3+) as a Multi-Color Emitting Phosphor for UV w-LEDs. Dalton Trans. 47, 6995 (2018).

    Article  CAS  Google Scholar 

  8. S. Dutta, S. Som, and S.K. Sharma, Luminescence and Photometric Characterization of K+ Compensated CaMoO4: Dy3+ Nanophosphors. Dalton Trans. 42, 9654 (2013).

    Article  CAS  Google Scholar 

  9. G. Sharma, D.H. Sang, S.P. Khatkar, V.B. Taxak, W.R. Young, Luminescent Properties of ZnS: Eu2+ Nanocrystals, ECS Trans. 1, 7 (2006)

  10. Y. Lin, Z. Tang, Z. Zhang, and C.W. Nan, Anomalous Luminescence in Sr4Al14O25: Eu, Dy Phosphors. Appl. Phys. Lett. 81, 996 (2002).

    Article  CAS  Google Scholar 

  11. P. Phogat, S.P. Khatkar, V.B. Taxak, and R.K. Malik, Sm3+ Doped Bi4MgO4(PO4)2: Crystal and Optoelectronic Investigation of the Solution Combustion Derived Bright Orange Emanating Novel Nanophosphor for SSLs. Mater. Chem. Phys. 276, 125389 (2022).

    Article  CAS  Google Scholar 

  12. Z. Xia, J. Zhou, and Z. Mao, Near UV-Pumped Green-Emitting Na3(Y, Sc)Si3O9: Eu2+ Phosphor for White-Emitting Diodes. J. Mater. Chem. C. 1, 5917 (2013).

    Article  CAS  Google Scholar 

  13. K. Tadatomo, M. Kato, H. Okagawa, M. Harada, T. Jyoichi, and T. Taguchi, Development of White LED Fabricated by RGB Phosphor and Near Ultra-Violet LED. Mitsubishi Cable Ind. Rev. 99, 35 (2002).

    Google Scholar 

  14. J. Liang, L. Sun, G. Annadurai, B. Devakumar, S. Wang, Q. Sun, J. Qiao, H. Guo, B. Li, and X. Huang, Synthesis and Photoluminescence Characteristics of High Color Purity Ba3Y4O9: Eu3+ Red-Emitting Phosphors with Excellent Thermal Stability for Warm W-LED Application. RSC Adv. 8, 32111 (2018).

    Article  CAS  Google Scholar 

  15. Y. Guan, Y. Huang, T. Tsuboi, W. Huang, C. Chen, P. Cai, and H.J. Seo, Conversion and Quantum Efficiency from Ultraviolet Light to Near Infrared Emission in Yb3+-Doped Pyrovanadates MZnV2O7 (M = Ca, Sr, Ba). Mater. Sci. Eng. B. 190, 26 (2014).

    Article  CAS  Google Scholar 

  16. P. Phogat, S.P. Khatkar, V.B. Taxak, and R.K. Malik, Eu3+ Incorporated Bi4MgO4(PO4)2: Derivation of the Novel Nanophosphor by Solution Combustion and Investigation in to Crystallographic and Photometric Characteristics. Solid State Sci. 124, 106799 (2022).

    Article  CAS  Google Scholar 

  17. S. Wang, B. Devakumar, Q. Sun, J. Liang, and L. Sun, Highly Efficient Near-UV-Excitable Ca2YHf2Al3O12: Ce3+, Tb3+ Green-Emitting Garnet Phosphors with Potential Application in High Color Rendering Warm-White LEDs. J. Mater. Chem. C. 8, 4408 (2020).

    Article  CAS  Google Scholar 

  18. P. Phogat, S.P. Khatkar, R.K. Malik, J. Dalal, M. Punia, and V.B. Taxak, Crystal Structure and Photoluminescent Analysis of Bright Orange-Red Emanating Sm-Doped Ca9Bi(VO4)7 Nanophosphor for WLEDs. J. Mater. Sci. Mater. Electron. 32, 1 (2021).

    Article  Google Scholar 

  19. Q. Su, Z. Pei, Q. Zeng, L. Chi, S.Z. Liu, J. Lin, S.P. Wang, and Y. Lu, Phosphors Doped with Dy3+ and Gd3+ for Lighting. Mater. Sci. Forum. 315–317, 228 (1999).

    Article  Google Scholar 

  20. M. Dalal, J. Dalal, S. Chahar, H. Dahiya, S. Devi, P. Dhankhar, S. Kumar, V.B. Taxak, D. Kumar, and S.P. Khatkar, A Hybrid Treatment of Ba2LaV3O11: Eu3+ Nanophosphor System: First-Principal and Experimental Investigations Into Electronic, Crystal and the Optical Structure. J. Alloys Compd. 805, 84 (2019).

    Article  CAS  Google Scholar 

  21. Y. Lin, Z. Tang, Z. Zhang, C.W. Nan, Anomalous Luminescence in Sr4Al14O25: Eu, Dy Phosphors. Appl. Phys. Lett. 81, 996 (2002)

  22. N. Kaczorowska, A. Szczeszak, and S. Lis, Synthesis and Tunable Emission Studies of New Up-Converting Ba2GdV3O11 Nanopowders Doped with Yb3+ /Ln3+ (Ln3+ = Er3+, Ho3+, Tm3+). J. Lumin. 200, 59 (2018).

    Article  CAS  Google Scholar 

  23. J. Dalal, M. Dalal, S. Devi, P. Dhankhar, A. Hooda, A. Khatkar, V.B. Taxak, and S.P. Khatkar, Structural and Judd-Ofelt Intensity Parameters of a Down-Converting Ba2GdV3O11:Eu3+ Nanophosphors. Mater. Chem. Phys. 243, 122631 (2020).

    Article  CAS  Google Scholar 

  24. S. Ekambaram, K.C. Patil, and M. Maaza, Synthesis of Lamp Phosphors: Facile Combustion Approach. J. Alloys Compd. 393, 81 (2005).

    Article  CAS  Google Scholar 

  25. M. Dalal, S. Chahar, J. Dalal, R. Devi, D. Kumar, S. Devi, V.B. Taxak, A. Khatkar, M. Kumar, and S.P. Khatkar, Energy Transfer and Photoluminescent Analysis of a Novel Color-Tunable Ba2Y1-xV3O11: xSm3+ Nanophosphor for Single-Phased Phosphor-Converted White LEDs. Ceram. Int. 44, 10531 (2018).

    Article  CAS  Google Scholar 

  26. K. Li, H. Lian, M. Shang, and J. Lin, A Novel Greenish Yellow-Orange Red Ba3Y4O9: Bi3+, Eu3+ Phosphor with Efficient Energy Transfer for UV-LEDs. Dalton Trans. 44, 20542 (2015).

    Article  CAS  Google Scholar 

  27. S. Chahar, R. Devi, M. Dalal, P. Boora, V.B. Taxak, and S.P. Khatkar, Structural and Photoluminescent Analysis in Judd-Ofelt Framework of Color Tunable SrGd2(1–x)Eu2xAl2O7 Nanophosphor for White Light Emitting Materials. J. Lumin. 194, 271 (2018).

    Article  CAS  Google Scholar 

  28. M. Jaboyedoff, B. Kübler, and P. Thelin, An Empirical Scherrer Equation for Weakly Swelling Mixed-Layer Minerals, Especially Illite-Smectite. Clay Miner. 34, 601–617 (1999). https://doi.org/10.1180/000985599546479.

    Article  CAS  Google Scholar 

  29. C. Pratapkumar, S.C. Prashantha, H. Nagabhushana, M.R. Anilkumar, C.R. Ravikumar, H.P. Nagaswarupa, and D.M. Jnaneshwara, White Light Emitting Magnesium Aluminate Nanophosphor: Near Ultra Violet Excited Photoluminescence, Photometric Characteristics and Its UV Photocatalytic Activity. J. Alloys Compd. 728, 1124 (2017).

    Article  CAS  Google Scholar 

  30. S.J. Park, J.Y. Kim, J.H. Yim, N.Y. Kim, C.H. Lee, S.J. Yang, and H.K. Yang, The effective Fingerprint Detection Application using Gd2Ti2O7: Eu3+ Nanophosphors. J. Alloys Compd. 741, 246 (2018).

    Article  CAS  Google Scholar 

  31. J. Dalal, A. Khatkar, M. Dalal, S. Chahar, P. Phogat, V.B. Taxak, and S.P. Khatkar, Ba2YV3O11: Eu3+—Density Functional and Experimental Analysis of Crystal, Electronic and Optical Properties. J. Alloys Compd. 821, 153471 (2020).

    Article  CAS  Google Scholar 

  32. X. Huang and H. Guo, A novel Highly Efficient Single-Composition Tunable White-Light-Emitting LiCa3MgV3O12: Eu3+ Phosphor. Dyes Pigm. 154, 82 (2018).

    Article  CAS  Google Scholar 

  33. P. Phogat, S.P. Khatkar, R.K. Malik, S. Devi, J. Dalal, P. Hooda, V.B. Taxak, Crystal Chemistry and Photoluminescent Investigation of Novel White Light Emanating Dy3+ Doped Ca9Bi(VO4)7 Nanophosphor for Ultraviolet Based White LEDs. Mater. Chem. Phys. 124828 (2021).

  34. D.K. Singh and J. Manam, Investigation of Structural, Spectral and Photometric Properties of CaTiO3: Dy3+ Nanophosphors for the Lighting Applications. Electron. Mater. Lett. 13, 292 (2017).

    Article  CAS  Google Scholar 

  35. A. Kumar, S.J. Dhoble, D.R. Peshwe, J. Bhatt, J.J. Terblans, and H.C. Swart, Crystal Structure, Energy Transfer Mechanism and Tunable Luminescence in Ce3+/Dy3+ Coactivated Ca20Mg3Al26Si3O68 Nanophosphors. Ceram. Int. 42, 10854 (2016).

    Article  CAS  Google Scholar 

  36. Y. Tian, B. Chen, B. Tian, R. Hua, J. Sun, L. Cheng, H. Zhong, X. Li, J. Zhang, Y. Zheng, T. Yu, L. Huang, and Q. Meng, Concentration-Dependent Luminescence and Energy Transfer of Flower-Like Y2(MoO4)3:Dy3+ Phosphor. J. Alloys Compd. 509, 6096 (2011).

    Article  CAS  Google Scholar 

  37. P. Phogat, S.P. Khatkar, R.K. Malik, J. Dalal, A. Hooda, and V.B. Taxak, Crystallographic and Judd-Ofelt Parametric Investigation into Ca9Bi(VO4)7:Eu3+ Nanophosphor for NUV-WLEDs. J. Lumin. 234, 117984 (2021).

    Article  CAS  Google Scholar 

  38. X. Huang, Preparation and Luminescence Characteristics of Monazite Eu3+: LaPO4 Nanocrystals in NH4NO3 Molten Salt. Opt. Mater. 50, 81 (2015).

    Article  CAS  Google Scholar 

  39. C.A. Kodaira, H.F. Brito, and M.C.F.C. Felinto, Luminescence Investigation of Eu3+ ion in the RE2(WO4)3 Matrix (RE = La and Gd) Produced Using the Pechini Method. J. Solid State Chem. 171, 401 (2003).

    Article  CAS  Google Scholar 

  40. M.H.V. Werts, R.T.F. Jukes, and J.W. Verhoeven, The Emission Spectrum and the Radiative Lifetime of Eu3+ in Luminescent Lanthanide Complexes. Phys. Chem. Chem. Phys. 4, 1542 (2002).

    Article  CAS  Google Scholar 

  41. G.P. Darshan, H.B. Premkumar, H. Nagabhushana, S.C. Sharma, S.C. Prashantha, H.P. Nagaswarup, and B.D. Prasad, Blue Light Emitting Ceramic Nano-Pigments of Tm3+ Doped YAlO3: Applications in Latent Finger Print, Anti-Counterfeiting and Porcelain Stoneware. Dyes Pigm. 131, 268 (2016).

    Article  CAS  Google Scholar 

  42. R. Shrivastava, J. Kaur, and M. Dash, Studies on White Light Emission of Sr2MgSi2O7 Doped with Dy3+ Phosphors. Superlattices Microstruct. 82, 262 (2015).

    Article  CAS  Google Scholar 

  43. M. Bharathy, V.A. Rassolov, and H.C. Loye, Crystal Growth of Sr3NaNbO6 and Sr3NaTaO6: New Photoluminescent Oxides. Chem. Mater. 20, 2268 (2008).

    Article  CAS  Google Scholar 

Download references

Acknowledgment

One of the authors, Ms. Priya Phogat, gratefully recognizes the University Grants Commission (UGC), New Delhi, India, for granting support to the research work financially in the form of senior research fellowship (SRF, Award No. 128/ CSIR-UGC NET DEC 2017).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. K. Malik.

Ethics declarations

Conflicts of Interest

The authors of this research article bear no conflicts of interests for declaration.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Phogat, P., Taxak, V.B. & Malik, R.K. Crystallographic and Optical Characteristics of Ultraviolet-Stimulated Dy3+-Doped Ba2GdV3O11 Nanorods. J. Electron. Mater. 51, 4541–4554 (2022). https://doi.org/10.1007/s11664-022-09711-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-022-09711-7

Keywords

Navigation