Skip to main content

Advertisement

Log in

Regulation of Zinc Interface by Maltitol for Long-Life Dendrite-free Aqueous Zinc Ion Batteries

  • Topical Collection: Advanced Metal Ion Batteries
  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

The formation of dendrites and low coulombic efficiency hinder the application of aqueous zinc ion batteries in large energy storage systems. As the electrolyte additive, maltitol is adsorbed on the zinc to regulate the anode interface. The maltitol inhibits the growth of zinc dendrites and improves the cycling stability of the zinc anode, which has been proven by a series of electrochemical approaches. The scanning electron microscope and the in situ optical microscope have recorded the smooth deposition of the zinc. The mechanism of interface regulation has been implemented by specific adsorption and deceleration kinetics, verified by x-ray photoelectron spectroscopy, Raman spectra, and DFT calculations. The Zn//Zn symmetric cells reached a stable plating/stripping performance over 1000 h at 2 mA cm-2 with 2 mA h cm-2. This cheap and eco-friendly additive provides an alternative for the application of aqueous zinc ion batteries.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data Availability

The data that support the findings of this study are available from the corresponding authors on reasonable request.

References

  1. Y. Son, N. Kim, T. Lee, Y. Lee, J. Ma, S. Chae, J. Sung, H. Cha, Y. Yoo, and J. Cho, Calendering-Compatible Macroporous Architecture for Silicon-Graphite Composite toward High-Energy Lithium-Ion Batteries. Adv. Mater. 32, 2003286 (2020).

    Article  Google Scholar 

  2. J.Q. Cao, Y.H. Xie, Y. Yang, X.H. Wang, W.Y. Li, Q.L. Zhang, S. Ma, S.Y. Cheng, and B.A. Lu, Achieving Uniform Li Plating/Stripping at Ultrahigh Currents and Capacities by Optimizing 3D Nucleation Sites and Li2Se-Enriched SEI. Adv. Sci. 9, 2104689 (2022).

    Article  CAS  Google Scholar 

  3. Y.H. Xie, J.Q. Cao, X.H. Wang, W.Y. Li, L.Y. Deng, S. Ma, H. Zhang, C. Guan, and W. Huang, MOF-Derived Bifunctional Co0.85Se Nanoparticles Embedded in N-Doped Carbon Nanosheet Arrays as Efficient Sulfur Hosts for Lithium-Sulfur Batteries. Nano Lett. 21, 8579 (2021).

    Article  CAS  Google Scholar 

  4. X.Y. Shan, Y. Zhong, L.J. Zhang, Y.Q. Zhang, X.H. Xia, X.L. Wang, and J.P. Tu, A Brief Review on Solid Electrolyte Interphase Composition Characterization Technology for Lithium Metal Batteries: Challenges and Perspectives. J. Phys. Chem. C 125, 19060 (2021).

    Article  CAS  Google Scholar 

  5. L. Huang, S.H. Shen, Y. Zhong, Y.Q. Zhang, L.J. Zhang, X.L. Wang, X.H. Xia, X.L. Tong, J.C. Zhou, and J.P. Tu, Multifunctional Hyphae Carbon Powering Lithium-Sulfur Batteries. Adv. Mater. 34, 2107415 (2022).

    Article  CAS  Google Scholar 

  6. C. Wang, Y. Li, F. Cao, Y. Zhang, X. Xia, and L. Zhang, Employing Ni-Embedded Porous Graphitic Carbon Fibers for High-Efficiency Lithium-Sulfur Batteries. ACS Appl. Mater. Interfaces 14, 10457 (2022).

    Article  CAS  Google Scholar 

  7. J.F. Parker, C.N. Chervin, I.R. Pala, M. Machler, M.F. Burz, J.W. Long, and D.R. Rolison, Rechargeable Nickel-3D Zinc Batteries: An Energy-Dense, Safer Alternative to Lithium-Ion. Science 356, 414 (2017).

    Article  CAS  Google Scholar 

  8. H.L. Pan, Y.Y. Shao, P.F. Yan, Y.W. Cheng, K.S. Han, Z.M. Nie, C.M. Wang, J.H. Yang, X.L. Li, P. Bhattacharya, K.T. Mueller, and J. Liu, Reversible Aqueous Zinc/Manganese Oxide Energy Storage from Conversion Reactions. Nat. Energy (2016). https://doi.org/10.1038/nenergy.2016.39.

    Article  Google Scholar 

  9. Z. Liu, G. Pulletikurthi, A. Lahiri, T. Cui, and F. Endres, Suppressing the Dendritic Growth of Zinc in an Ionic Liquid Containing Cationic and Anionic Zinc Complexes for Battery Applications. Dalton Trans. 45, 8089 (2016).

    Article  CAS  Google Scholar 

  10. I. Arise, S. Kawai, Y. Fukunaka, and F.R. McLarnon, Coupling Phenomena between Zinc Surface Morphological Variations and Ionic Mass Transfer Rate in Alkaline Solution. J. Electrochem. Soc. 160, D66 (2013).

    Article  CAS  Google Scholar 

  11. X.X. Jia, C.F. Liu, Z.G. Neale, J.H. Yang, and G.Z. Cao, Active Materials for Aqueous Zinc Ion Batteries: Synthesis, Crystal Structure, Morphology, and Electrochemistry. Chem. Rev. 120, 7795 (2020).

    Article  CAS  Google Scholar 

  12. S. Guo, L.P. Qin, T.S. Zhang, M. Zhou, J. Zhou, G.Z. Fang, and S.Q. Liang, Fundamentals and Perspectives of Electrolyte Additives for Aqueous Zinc-Ion Batteries. Energy Storage Mater. 34, 545–562 (2021).

    Article  Google Scholar 

  13. Z.X. Liu, Y. Huang, Y. Huang, Q. Yang, X.L. Li, Z.D. Huang, and C.Y. Zhi, Voltage Issue of Aqueous Rechargeable Metal-Ion Batteries. Chem. Soc. Rev. 49, 180 (2020).

    Article  CAS  Google Scholar 

  14. J.N. Hao, J. Long, B. Li, X.L. Li, S.L. Zhang, F.H. Yang, X.H. Zeng, Z.H. Yang, W.K. Pang, and Z.P. Guo, Toward High-Performance Hybrid Zn-Based Batteries via Deeply Understanding Their Mechanism and Using Electrolyte Additive. Adv. Funct. Mater. 29, 1903605 (2019).

    Article  CAS  Google Scholar 

  15. J. Liu, N.Y. Nie, J.Q. Wang, M.M. Hu, J.H. Zhang, M.Y. Li, and Y. Huang, Initiating a Wide-Temperature-Window Yarn Zinc Ion Battery by a Highly Conductive Iongel. Mater. Today Energy 16, 100372 (2020).

    Article  Google Scholar 

  16. C.L. Xie, Y.H. Li, Q. Wang, D. Sun, Y.G. Tang, and H.Y. Wang, Issues and Solutions Toward Zinc Anode in Aqueous Zinc-Ion Batteries: A Mini Review. Carbon Energy 2, 540 (2020).

    Article  CAS  Google Scholar 

  17. F.F. Wu, X.B. Gao, X.L. Xu, Y.N. Jiang, X.L. Gao, R.L. Yin, W.H. Shi, W.X. Liu, G. Lu, and X.H. Cao, MnO2 Nanosheet-Assembled Hollow Polyhedron Grown on Carbon Cloth for Flexible Aqueous Zinc-Ion Batteries. Chemsuschem 13, 1537 (2020).

    Article  CAS  Google Scholar 

  18. Q.Y. Liu, H.Z. Zhang, J.H. Xie, X.Q. Liu, and X.H. Lu, Recent Progress and Challenges of Carbon Materials for Zn-ion Hybrid Supercapacitors. Carbon Energy 2, 521 (2020).

    Article  CAS  Google Scholar 

  19. Z.M. Zhao, J.W. Zhao, Z.L. Hu, J.D. Li, J.J. Li, Y.J. Zhang, C. Wang, and G.L. Cui, Long-Life and Deeply Rechargeable Aqueous Zn Anodes Enabled by a Multifunctional Brightener-Inspired Interphase. Energy Environ. Sci. 12, 1938 (2019).

    Article  CAS  Google Scholar 

  20. A. Pei, G.Y. Zheng, F.F. Shi, Y.Z. Li, and Y. Cui, Nanoscale Nucleation and Growth of Electrodeposited Lithium Metal. Nano Lett. 17, 1132 (2017).

    Article  CAS  Google Scholar 

  21. T. Otani, Y. Fukunaka, and T. Homma, Effect of Lead and Tin Additives on Surface Morphology Evolution of Electrodeposited Zinc. Electrochim. Acta 242, 364 (2017).

    Article  CAS  Google Scholar 

  22. Y.X. Song, J.H. Hu, J. Tang, W.M. Gu, L.L. He, and X.B. Ji, Real-Time X-ray Imaging Reveals Interfacial Growth, Suppression, and Dissolution of Zinc Dendrites Dependent on Anions of Ionic Liquid Additives for Rechargeable Battery Applications. ACS Appl. Mater. Interfaces 8, 32031 (2016).

    Article  CAS  Google Scholar 

  23. A. Mitha, A.Z. Yazdi, M. Ahmed, and P. Chen, Surface Adsorption of Polyethylene Glycol to Suppress Dendrite Formation on Zinc Anodes in Rechargeable Aqueous Batteries. ChemElectroChem 5, 2409 (2018).

    Article  CAS  Google Scholar 

  24. A. Bayaguud, X. Luo, Y.P. Fu, and C.B. Zhu, Cationic Surfactant-Type Electrolyte Additive Enables Three-Dimensional Dendrite-Free Zinc Anode for Stable Zinc-Ion Batteries. ACS Energy Lett. 5, 3012 (2020).

    Article  CAS  Google Scholar 

  25. F. Wan, L.L. Zhang, X. Dai, X.Y. Wang, Z.Q. Niu, and J. Chen, Aqueous rechargeable Zinc/Sodium Vanadate Batteries with Enhanced Performance from Simultaneous Insertion of Dual Carriers. Nat. Commun. (2018). https://doi.org/10.1038/s41467-018-04060-8.

    Article  Google Scholar 

  26. H.Y. Qiu, X.F. Du, J.W. Zhao, Y.T. Wang, J.W. Ju, Z. Chen, Z.L. Hu, D.P. Yan, X.H. Zhou, and G.L. Cui, Zinc Anode-Compatible In-Situ Solid Electrolyte Interphase via Cation Solvation Modulation. Nat. Commun. 10, 1 (2019).

    Article  CAS  Google Scholar 

  27. X.H. Zeng, J.F. Mao, J.N. Hao, J.T. Liu, S.L. Liu, Z.J. Wang, Y.Y. Wang, S.L. Zhang, T. Zheng, J.W. Liu, P.H. Rao, and Z.P. Guo, Electrolyte Design for In Situ Construction of Highly Zn2+-Conductive Solid Electrolyte Interphase to Enable High-Performance Aqueous Zn-Ion Batteries under Practical Conditions. Adv. Mater. 33, 2007416 (2021).

    Article  CAS  Google Scholar 

  28. Y.J. Zhang, M. Zhu, K. Wu, F.F. Yu, G.Y. Wang, G. Xu, M.H. Wu, H.K. Liu, S.X. Dou, and C. Wu, An In-depth Insight of a Highly Reversible and Dendrite-free Zn Metal Anode in an Hybrid Electrolyte. J. Mater. Chem. A 9, 4253 (2021).

    Article  CAS  Google Scholar 

  29. F. Wang, O. Borodin, T. Gao, X.L. Fan, W. Sun, F.D. Han, A. Faraone, J.A. Dura, K. Xu, and C.S. Wang, Highly Reversible Zinc Metal Anode for Aqueous Batteries. Nat. Mater. 17, 543 (2018).

    Article  CAS  Google Scholar 

  30. Z. Li, S. Ganapathy, Y. Xu, Z. Zhou, M. Sarilar, and M. Wagemaker, Mechanistic Insight into the Electrochemical Performance of Zn/VO2 Batteries with an Aqueous ZnSO4 Electrolyte. Adv. Energy Mater. 9, 1900237 (2019).

    Article  CAS  Google Scholar 

  31. Q.B. Zhang, and Y.X. Hua, Effects of 1-Butyl-3-Methylimidazolium Hydrogen Sulfate-[BMIM]HSO4 on Zinc Electrodeposition from Acidic Sulfate Electrolyte. J. Appl. Electrochem. 39, 261 (2009).

    Article  CAS  Google Scholar 

  32. D.J. Mackinnon, R.M. Morrison, J.E. Mouland, and P.E. Warren, The Effects of Antimony and Glue on Zinc Electrowinning from Kidd Creek Electrolyte. J. Appl. Electrochem. 20, 728 (1990).

    Article  CAS  Google Scholar 

  33. D.W. Oxtoby, and D. Kashchiev, A General Relation between the Nucleation Work and the Size of the Nucleus in Multicomponent Nucleation. J. Chem. Phys. 100, 7665 (1994).

    Article  CAS  Google Scholar 

  34. Q. Wang, C.K. Yang, J.J. Yang, K. Wu, C.J. Hu, J. Lu, W. Liu, X.M. Sun, J.Y. Qiu, and H.H. Zhou, Dendrite-Free Lithium Deposition via a Superfilling Mechanism for High-Performance Li-Metal Batteries. Adv. Mater. 31, 1903248 (2019).

    Article  CAS  Google Scholar 

  35. C. Yan, R. Xu, Y. Xiao, J.F. Ding, L. Xu, B.Q. Li, and J.Q. Huang, Toward Critical Electrode/Electrolyte Interfaces in Rechargeable Batteries. Adv. Funct. Mater. 30, 1909887 (2020).

    Article  CAS  Google Scholar 

  36. C. Yan, H.R. Li, X. Chen, X.Q. Zhang, X.B. Cheng, R. Xu, J.Q. Huang, and Q. Zhang, Regulating the Inner Helmholtz Plane for Stable Solid Electrolyte Interphase on Lithium Metal Anodes. J. Am. Chem. Soc. 141, 9422 (2019).

    Article  CAS  Google Scholar 

  37. J.N. Hao, L.B. Yuan, C. Ye, D.L. Chao, K. Davey, Z.P. Guo, and S.Z. Qiao, Boosting Zinc Electrode Reversibility in Aqueous Electrolytes by Using Low-Cost Antisolvents. Angew. Chem. Int. Edit. 60, 7366 (2021).

    Article  CAS  Google Scholar 

  38. H.L. Dai, J. Dong, M.J. Wu, Q.M. Hu, D.N. Wang, L. Zuin, N. Chen, C. Lai, G.X. Zhang, and S.H. Sun, Cobalt-Phthalocyanine-Derived Molecular Isolation Layer for Highly Stable Lithium Anode. Angew. Chem. Int. Edit. 60, 19852 (2021).

    Article  CAS  Google Scholar 

  39. R. Xu, X. Shen, X.X. Ma, C. Yan, X.Q. Zhang, X. Chen, J.F. Ding, and J.Q. Huang, Identifying the Critical Anion-Cation Coordination to Regulate the Electric Double Layer for an Efficient Lithium-Metal Anode Interface. Angew. Chem. Int. Edit. 60, 4215 (2021).

    Article  CAS  Google Scholar 

  40. S.L. Liu, J.F. Mao, W.K. Pang, J. Vongsvivut, X.H. Zeng, L. Thomsen, Y.Y. Wang, J.W. Liu, D. Li, and Z.P. Guo, Tuning the Electrolyte Solvation Structure to Suppress Cathode Dissolution, Water Reactivity, and Zn Dendrite Growth in Zinc-Ion Batteries. Adv. Funct. Mater. 31, 2104281 (2021).

    Article  CAS  Google Scholar 

  41. Q. Yang, Q. Li, Z. Liu, D. Wang, Y. Guo, X. Li, Y. Tang, H. Li, B. Dong, and C. Zhi, Dendrites in Zn-Based Batteries. Adv. Mater. 32, 2001854 (2020).

    Article  CAS  Google Scholar 

  42. M. de Veij, P. Vandenabeele, T. De Beer, J.P. Remon, and L. Moens, Reference Database of Raman Spectra of Pharmaceutical Excipients. J. Raman Spectrosc. 40, 297 (2009).

    Article  CAS  Google Scholar 

  43. B. Guven, S. Durakli-Velioglu, and I.H. Boyaci, Rapid Identification of Some Sweeteners and Sugars by Attenuated Total Reflectance-Fourier Transform Infrared (ATR-FTIR), Near-Infrared (NIR) and Raman Spectroscopy. Gida J. Food (2019). https://doi.org/10.15237/gida.GD18119.

    Article  Google Scholar 

  44. X. Guo, Z. Zhang, J. Li, N. Luo, G.-L. Chai, T.S. Miller, F. Lai, P. Shearing, D.J. Brett, and D. Han, Alleviation of Dendrite Formation on Zinc Anodes via Electrolyte Additives. ACS Energy Lett. 6, 395 (2021).

    Article  CAS  Google Scholar 

  45. L. Cao, D. Li, E. Hu, J. Xu, T. Deng, L. Ma, Y. Wang, X.-Q. Yang, and C. Wang, Solvation Structure Design for Aqueous Zn Metal Batteries. J. Am. Chem. Soc. 142, 21404 (2020).

    Article  CAS  Google Scholar 

  46. Z. Cai, Y. Ou, J. Wang, R. Xiao, L. Fu, Z. Yuan, R. Zhan, and Y. Sun, Chemically Resistant Cu–Zn/Zn Composite Anode for Long Cycling Aqueous Batteries. Energy Storage Mater. 27, 205 (2020).

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported primarily by the National Natural Science Foundation of China (No. 22109025, U1905215, 52072076), National Key Research and Development Program of China (2020YFA0710303), the Natural Science Foundation of Fujian Province, China (2021J05121), the Excellent Youth Foundation of the Fujian Scientific Committee (Grant Number 2019J06008), and the Award Program for Fujian Minjiang Scholar Professorship. Thanks to the supporting of Testing Center of Fuzhou University.

Author information

Authors and Affiliations

Authors

Contributions

Qiaoli Zhang and Liying Deng contributed equally to this work. Qiaoli Zhang and Liying Deng performed the experiments and conducted the data analysis with contributions from Mengchao Li, Xiaofeng Wang, Rui Li, and Zheyuan Liu designed and performed the DFT calculations. Chengkai Yang and Xinghui Wang conceived and designed the experimental research and gave guidance for all the results. Wen Liu and Yan Yu provided project administration and funding acquisition. All authors discussed the results and commented on the manuscripts.

Corresponding authors

Correspondence to Chengkai Yang, Xinghui Wang, Wen Liu or Yan Yu.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Q., Deng, L., Li, M. et al. Regulation of Zinc Interface by Maltitol for Long-Life Dendrite-free Aqueous Zinc Ion Batteries. J. Electron. Mater. 51, 4763–4771 (2022). https://doi.org/10.1007/s11664-022-09675-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-022-09675-8

Keywords

Navigation