Skip to main content
Log in

Effect of Annealing Temperature on Copper-Doped Nickel Oxide Nanomaterials for Efficient Degradation of Methylene Blue Under Solar Irradiation

  • Original Research Article
  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

Copper-doped nickel oxide nanomaterials (Cu-NiOx@300, Cu-NiOx@500 and Cu-NiOx@700) were prepared by co-precipitation of Ni(II) and Cu(II) hydroxides followed by treatment of the solid material at different annealing temperatures (300°C, 500°C and 700°C). The samples were characterized using a combination of spectroscopic and microscopic techniques including infrared (IR), UV-visible, x-ray diffraction (XRD), field emission scanning electron microscopy (FE-SEM) and energy-dispersive x-ray (EDX) techniques. While the XRD diffractograms indicated that the crystallinity and crystallite size of Cu-NiOx@300, Cu-NiOx@500 and Cu-NiOx@700 gradually increased with a decrease in specific surface area, the UV-visible study suggested a decrease in the band energy gap with increasing annealing temperature. An increase in lattice constants for the Cu-NiOx nanomaterials in comparison with NiO suggested the successful doping of Cu into the lattice of NiO. From the FE-SEM images it was also evident that the particle size increased with increasing annealing temperature, whereas elemental mapping indicated that Ni, Cu and O atoms were well dispersed on the Cu-NiOx matrixes. Following pseudo-first-order reaction kinetics, Cu-NiOx@700 exhibited the most efficient photocatalytic degradation of methylene blue (MB) (k700 = 0.0109 min−1) compared with Cu-NiOx@500 (k500 = 0.0053 min−1) and Cu-NiOx@300 (k300 = 0.0035 min−1) under solar irradiation.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. E. Brillas and C.A. Martínez-Huitle, Appl. Catal. B Environ. 166–167, 603 (2015).

    Article  CAS  Google Scholar 

  2. S.K. Sahoo, S. Padhiari, S.K. Biswal, B.B. Panda, and G. Hota, Mater. Chem. Phys. 244, 122710 (2020).

    Article  CAS  Google Scholar 

  3. R. Kant, Nat. Sci. 04, 22 (2012).

    CAS  Google Scholar 

  4. A.M. Aljeboree, A.N. Alshirifi, and A.F. Alkaim, Arab. J. Chem. 10, S3381 (2017).

    Article  CAS  Google Scholar 

  5. A.H. Konsowa, M.E. Ossman, Y. Chen, and J.C. Crittenden, J. Hazard. Mater. 176, 181 (2010).

    Article  CAS  Google Scholar 

  6. S.H.S. Chan, T.Y. Wu, J.C. Juan, and C.Y. Teh, J. Chem. Technol. Biotechnol. 86, 1130 (2011).

    Article  CAS  Google Scholar 

  7. M. Cheng, G. Zeng, D. Huang, C. Lai, P. Xu, C. Zhang, and Y. Liu, Chem. Eng. J. 284, 582 (2016).

    Article  CAS  Google Scholar 

  8. D. Chatterjee and S. Dasgupta, J. Photochem. Photobiol. C Photochem. Rev. 6, 186 (2005).

    Article  CAS  Google Scholar 

  9. X.-T. Zhou, H.-B. Ji, and X.-J. Huang, Molecules 17, 1149 (2012).

    Article  CAS  Google Scholar 

  10. F.A. Harraz, R.M. Mohamed, M.M. Rashad, Y.C. Wang, and W. Sigmund, Ceram. Int. 40, 375 (2014).

    Article  CAS  Google Scholar 

  11. M.E. Borges, M. Sierra, E. Cuevas, R.D. García, and P. Esparza, Sol. Energy 135, 527 (2016).

    Article  CAS  Google Scholar 

  12. C. Chen, W. Ma, and J. Zhao, Chem. Soc. Rev. 39, 4206 (2010).

    Article  CAS  Google Scholar 

  13. T.N. Reddy, S. Meher, G. Begum, B.B. Panda, and R.K. Rana, ChemistrySelect 4, 5888 (2019).

    Article  CAS  Google Scholar 

  14. G.M. Neelgund and A. Oki, Appl. Catal. B Environ. 110, 99 (2011).

    Article  CAS  Google Scholar 

  15. A.S. Etman, H.N. Abdelhamid, Y. Yuan, L. Wang, X. Zou, and J. Sun, ACS Omega 3, 2201 (2018).

    Article  CAS  Google Scholar 

  16. I. Nath, J. Chakraborty, P.M. Heynderickx, and F. Verpoort, Appl. Catal. B Environ. 227, 102 (2018).

    Article  CAS  Google Scholar 

  17. U.S. Joshi, Y. Matsumoto, K. Itaka, M. Sumiya, and H. Koinuma, Appl. Surf. Sci. 252, 2524 (2006).

    Article  CAS  Google Scholar 

  18. G. Anandha Babu, G. Ravi, T. Mahalingam, M. Kumaresavanji, and Y. Hayakawa. Dalt. Trans. 2015, 44, p. 4485.

  19. K.C. Wang, P.S. Shen, M.H. Li, S. Chen, M.W. Lin, P. Chen, T.F. Guo, and A.C.S. Appl, Mater. Interfaces 6, 11851 (2014).

    Article  CAS  Google Scholar 

  20. S.C. Chen, T.Y. Kuo, Y.C. Lin, and H.C. Lin, Thin Solid Films 519, 4944 (2011).

    Article  CAS  Google Scholar 

  21. C. C. Diao, C. Y. Huang, C. F. Yang, and C. C. Wu, Nanomaterials 10, (2020).

  22. E. Avendaño, A. Azens, G.A. Niklasson, and C.G. Granqvist, Sol. Energy Mater. Sol. Cells 84, 337 (2004).

    Article  CAS  Google Scholar 

  23. M.C.A. Fantini, F.F. Ferreira, and A. Gorenstein, Solid State Ionics 152–153, 867 (2002).

    Article  Google Scholar 

  24. L. Zhao, G. Su, W. Liu, L. Cao, J. Wang, Z. Dong, and M. Song, Appl. Surf. Sci. 257, 3974 (2011).

    Article  CAS  Google Scholar 

  25. S. Moghe, A.D. Acharya, R. Panda, S.B. Shrivastava, M. Gangrade, T. Shripathi, and V. Ganesan, Renew. Energy 46, 43 (2012).

    Article  CAS  Google Scholar 

  26. Z. Ahmad, A.M. Afzal, M.F. Khan, A. Manzoor, H.M.W. Khalil, and S. Aftab, J. Nanoelectron. Optoelectron. 14, 1304 (2019).

    Article  CAS  Google Scholar 

  27. K. Varunkumar, R. Hussain, G. Hegde, and A.S. Ethiraj, Mater. Sci. Semicond. Process. 66, 149 (2017).

    Article  CAS  Google Scholar 

  28. Y. AshokKumarReddy, B. Ajitha, and P. Sreedhara Reddy, Mater. Expr. 4, 32 (2014).

    Article  CAS  Google Scholar 

  29. A. Haichour and N. Hamdadou, J. Nano- Electron. Phys. 11, 1 (2019).

    Google Scholar 

  30. H.S. Kang, J.S. Kang, J.W. Kim, and S.Y. Lee, J. Appl. Phys. 95, 1246 (2004).

    Article  CAS  Google Scholar 

  31. J. Yu, and B. Wang, Appl. Catal. B Environ. 94, 295 (2010).

    Article  CAS  Google Scholar 

  32. D.A.H. Hanaor, and C.C. Sorrell, J. Mater. Sci. 46, 855 (2011).

    Article  CAS  Google Scholar 

  33. J.G. Yu, H.G. Yu, B. Cheng, X.J. Zhao, J.C. Yu, and W.K. Ho, J. Phys. Chem. B 107, 13871 (2003).

    Article  CAS  Google Scholar 

  34. J. Fan, L. Zhao, J. Yu, and G. Liu, Nanoscale 4, 6597 (2012).

    Article  CAS  Google Scholar 

  35. A. López-Vásquez, A. Suárez-Escobar, and J.H. Ramírez, Chem. Select 5, 252 (2020).

    Google Scholar 

  36. N. Saikumari, S.M. Dev, and S.A. Dev, Sci. Rep. 11, 1 (2021).

    Article  CAS  Google Scholar 

  37. K.N. Patel, M.P. Deshpande, K. Chauhan, P. Rajput, V. Sathe, S. Pandya, and S.H. Chaki, Mater. Res. Expr. 4, 105027 (2017).

    Article  CAS  Google Scholar 

  38. N. Maity, A. Sahoo, R. Boddhula, S. Chatterjee, S. Patra, and B.B. Panda, Dalt. Trans. 49, 11019 (2020).

    Article  CAS  Google Scholar 

  39. H. Lee, W. Yang, J. Tan, Y. Oh, J. Park, and J. Moon, ACS Energy Lett. 4, 995 (2019).

    Article  CAS  Google Scholar 

  40. S.A. Phaltane, S.A. Vanalakar, T.S. Bhat, P.S. Patil, S.D. Sartale, and L.D. Kadam, J. Mater. Sci. Mater. Electron. 28, 8186 (2017).

    Article  CAS  Google Scholar 

  41. G. M. Neelgund and A. Oki, Mater. Res. Bull. 129, (2020).

  42. Q. He, K. Yao, X. Wang, X. Xia, S. Leng, F. Li, and A.C.S. Appl, Mater. Interfaces 9, 41887 (2017).

    Article  CAS  Google Scholar 

  43. U. Holzwarth, and N. Gibson, Nat. Nanotechnol. 6, 534 (2011).

    Article  CAS  Google Scholar 

  44. D.K. Muthee and B.F. Dejene, Heliyon 7, e07269 (2021).

    Article  Google Scholar 

  45. N. Maity, S. Barman, E. Callens, M.K. Samantaray, E. Abou-Hamad, Y. Minenkov, V. D’Elia, A.S. Hoffman, C.M. Widdifield, L. Cavallo, B.C. Gates, and J.M. Basset, Chem. Sci. 7, 1558 (2016).

    Article  CAS  Google Scholar 

  46. S. Barman, N. Maity, K. Bhatte, S. Ould-Chikh, O. Dachwald, C. Haeßner, Y. Saih, E. Abou-Hamad, I. Llorens, J.L. Hazemann, K. Köhler, V. D’Elia, and J.M. Basset, ACS Catal. 6, 5908 (2016).

    Article  CAS  Google Scholar 

  47. N. Maity, S. Barman, Y. Minenkov, S. Ould-Chikh, E. Abou-Hamad, T. Ma, Z.S. Qureshi, L. Cavallo, V. D’Elia, B.C. Gates, and J.M. Basset, ACS Catal. 8, 2715 (2018).

    Article  CAS  Google Scholar 

  48. M. Alagiri, S. Ponnusamy, and C. Muthamizhchelvan, J. Mater. Sci. Mater. Electron. 23, 728 (2012).

    Article  CAS  Google Scholar 

  49. K.K. Purushothaman and G. Muralidharan, Sol. Energy Mater. Sol. Cells 93, 1195 (2009).

    Article  CAS  Google Scholar 

  50. P.K. Raul, S. Senapati, A.K. Sahoo, I.M. Umlong, R.R. Devi, A.J. Thakur, and V. Veer, RSC Adv. 4, 40580 (2014).

    Article  CAS  Google Scholar 

  51. F. Davar, Z. Fereshteh, and M. Salavati-Niasari, J. Alloys Compd. 476, 797 (2009).

    Article  CAS  Google Scholar 

  52. N. Maity, C. Wattanakit, S. Muratsugu, N. Ishiguro, Y. Yang, S.I. Ohkoshi, and M. Tada, Dalt. Trans. 41, 4558 (2012).

    Article  CAS  Google Scholar 

  53. S. Muratsugu, N. Maity, H. Baba, M. Tasaki, and M. Tada, Dalt. Trans. 46, 3125 (2017).

    Article  CAS  Google Scholar 

  54. H. Yan, X. Wang, M. Yao, and X. Yao, Prog. Nat. Sci. Mater. Int. 23, 402 (2013).

    Article  CAS  Google Scholar 

  55. J. Tauc, Mater. Res. Bull. 3, 37 (1968).

    Article  CAS  Google Scholar 

  56. A. Yadav, S. Khasa, M.S. Dahiya, S. Dalal, A. Hooda, and A. Agarwal, Phys. Chem. Glas. Eur. J. Glas. Sci. Technol. Part B 57, 146 (2016).

    Article  Google Scholar 

  57. K. Varunkumar, A. S. Ethiraj, and A. Kechiantz, in AIP Conf. Proc. (American Institute of Physics Inc., 2018), p. 030174.

  58. W. Meng, R. Hu, J. Yang, Y. Du, J. Li, and H. Wang, Chin. J. Catal. 37, 1283 (2016).

    Article  CAS  Google Scholar 

  59. S. Fatima, S.I. Ali, M.Z. Iqbal, and S. Rizwan, RSC Adv. 7, 35928 (2017).

    Article  CAS  Google Scholar 

  60. M. Ramesh, M.P.C. Rao, S. Anandan, and H. Nagaraja, J. Mater. Res. 33, 601 (2018).

    Article  CAS  Google Scholar 

  61. T. Wang, J. Lang, Y. Zhao, Y. Su, Y. Zhao, and X. Wang, Cryst. Eng. Comm. 17, 6651 (2015).

    Article  CAS  Google Scholar 

  62. A. Fujishima, T.N. Rao, and D.A. Tryk, J. Photochem. Photobiol. C Photochem. Rev. 1, 1 (2000).

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This research work was sponsored by TEQIP-III research scheme from IGIT, Sarang, Odisha. N. M. and D. T. are grateful to the National Project Implementation Unit (NPIU), MHRD, India for the Collaborative Research Scheme (CRS). The authors acknowledge Dr. Barsha Dash, IMMT, Bhubaneswar, Dr. Rohit Kumar Rana, IICT, Hyderabad and Dr. Srikanta Patra, IIT Bhunabeswar, India for their invaluable suggestions in preparing the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Binod Bihari Panda or Niladri Maity.

Ethics declarations

Conflict of interest

The authors declare no competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 532 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tripathy, D., Panda, B.B. & Maity, N. Effect of Annealing Temperature on Copper-Doped Nickel Oxide Nanomaterials for Efficient Degradation of Methylene Blue Under Solar Irradiation. J. Electron. Mater. 51, 3598–3605 (2022). https://doi.org/10.1007/s11664-022-09591-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-022-09591-x

Keywords

Navigation