Skip to main content

Advertisement

Log in

Prediction of a Beryllium Phosphide Iodide Monolayer as a Photocatalyst for Water Splitting by Density Functional Theory

  • Original Research Article
  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

In this paper, a 2D monolayer compound of beryllium phosphide iodide, namely Be2PI monolayer, was systematically designed. Our design was conducted by computational simulation on the basis of density functional theory. The stability of the proposed structure was confirmed by cohesive energy evaluation and phonon dispersion mode analysis. We further investigated its promising electrical properties and applications. Based on our simulation, 2D Be2PI monolayer is a stable indirect semiconductor exhibiting a moderate bandgap of 2.41 eV, as obtained from Heyd–Scuseria–Ernzerhof (HSE06) theory. We also compared the positions of the band edge of the predicted monolayer with the redox potentials of water and found that it is a suitable material for use as a photocatalyst in water splitting. The calculated interesting properties for the designed 2D Be2PI monolayer suggest that this material can be employed in many practical usages, especially for use in pure hydrogen production.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, Y. Zhang, S.V. Dubonos, I.V. Grigorieva, and A.A. Firsov, Electric field effect in atomically thin carbon films. Science 306, 666 (2004).

    Article  CAS  Google Scholar 

  2. Q. Tang, and Z. Zhou, Graphene-analogous low-dimensional materials. Prog. Mater. Sci. 58, 1244 (2013).

    Article  CAS  Google Scholar 

  3. J.J. Zhao, H.S. Liu, Z.M. Yu, R.G. Quhe, S. Zhou, Y.Y. Wang, C.C. Liu, H.X. Zhong, N.N. Han, J. Lu, Y.G. Yao, and K.H. Wu, Rise of silicene: a competitive 2d material. Prog. Mater. Sci. 83, 24 (2016).

    Article  CAS  Google Scholar 

  4. K.S. Novoselov, A. Mishchenko, A. Carvalho, and A.H. Castro Neto, 2d Materials and Van Der Waals Heterostructures. Science 353, 9439 (2016).

    Article  Google Scholar 

  5. S. Balendhran, S. Walia, H. Nili, S. Sriram, and M. Bhaskaran, Elemental analogues of graphene: silicene, germanene, stanene, and phosphorene. Small 11, 640 (2015).

    Article  CAS  Google Scholar 

  6. M. Xu, T. Liang, M. Shi, and H. Chen, Graphene-like two-dimensional materials. Chem. Rev. 113, 3766 (2013).

    Article  CAS  Google Scholar 

  7. M. Naseri, J. Jalilian, F. Parandin, and Kh. Salehi, A new stable polycrystalline Be2C monolayer: a direct semiconductor with hexa-coordinate carbons. Phys. Lett. A 382, 2144 (2018).

    Article  CAS  Google Scholar 

  8. M. Naseri, J. Jalilian, and A.H. Reshak, Electronic and optical properties of paratellurite TeO2 under pressure: a first-principles calculation. Optik 139, 9 (2017).

    Article  CAS  Google Scholar 

  9. M. Naseri, and J. Jalilian, Electronic and optical investigations of Be2C monolayer: Under stress and strain conditions. Mater. Res. Bull. 88, 49 (2017).

    Article  CAS  Google Scholar 

  10. M. Naseri, J. Jalilian, and A.H. Reshak, Electronic and optical properties of pentagonal-B2C monolayer: A first-principles calculation. Int. J. Mod. Phys. B 31, 1750044 (2017).

    Article  CAS  Google Scholar 

  11. M. Naseri, Magnesium carbide monolayer: A novel quasi-planar semiconductor. Superlattices Microstruct. 102, 134 (2017).

    Article  CAS  Google Scholar 

  12. S.Z. Butler, S.M. Hollen, L. Cao, Y. Cui, J.A. Gupta, H.R. Gutierrez, T.F. Heinz, S.S. Hong, J. Huang, A.F. Ismach, E. Johnston-Halperin, M. Kuno, V.V. Plashnitsa, R.D. Robinson, R.S. Ruoff, S. Salahuddin, J. Shan, L. Shi, M.G. Spencer, M. Terrones, W. Windl, and J.E. Goldberger, Progress, challenges and opportunities in two-dimensional materials beyond graphene. ACS Nano 7, 2898 (2013).

    Article  CAS  Google Scholar 

  13. A. Molle, J. Goldberger, M. Houssa, Y. Xu, S.C. Zhang, and D. Akinwande, Buckled two-dimensional xene sheets. Nat. Mater. 16, 163 (2017).

    Article  CAS  Google Scholar 

  14. G.G. Guzmán-Verri, and L.C. Lew Yan Voon, Electronic Structure of Silicon-Based Nanostructures. Phys. Rev. B 76, 075131 (2007).

    Article  Google Scholar 

  15. X. Yu, S. Zhang, H. Zeng, and Q.J. Wang, Lateral black phosphorene P-N junctions formed via chemical doping for high performance near-infrared photodetector. Nano Energy 25, 34 (2016).

    Article  CAS  Google Scholar 

  16. C. Song, Fuel processing for low-temperature and high-temperature fuel cells:challenges, and opportunities for sustainable development in the 21st century. Catal Today 77, 17 (2002).

    Article  CAS  Google Scholar 

  17. R.M. Navarro, M.A. Pena, and J.L.G. Fierro, Hydrogen production reactions from carbonfeedstocks: fossil fuels and biomass. Chem Rev 107, 3952 (2007).

    Article  CAS  Google Scholar 

  18. J.R. Bartels, M.B. Pate, and N.K. Olson, An economic survey of hydrogen productionfrom conventional and alternative energy sources. Int J Hydrogen Energy 35, 8371 (2010).

    Article  CAS  Google Scholar 

  19. A. Boyano, A.M. Blanco-Marigorta, T. Morosuk, and G. Tsatsaronis, Exergoenvironmental analysis of a steam methane reforming process for hydrogen pro-duction. Energy 36, 2202 (2011).

    Article  CAS  Google Scholar 

  20. M. Xie, S. Zhang, B. Cai, Y. Huang, Y. Zou, B. Guo, Y. Gu, and H. Zeng, A promising two-dimensional solar cell donor: black arsenic–phosphorus monolayer with 1.54 eV direct bandgap and mobility exceeding 14,000 cm2 V−1 S−1. Nano Energy 28, 433 (2016).

    Article  CAS  Google Scholar 

  21. J. Yang, Y.L. Jiang, L.J. Li, E. Muhire, and M.-Z. Gao, High-performance photodetectors and enhanced photocatalysts of two-dimensional TiO2 nanosheets under UV light excitation. Nanoscale 8, 8170 (2016).

    Article  CAS  Google Scholar 

  22. P.K. Kanaujia, and G.V. Prakash, Laser-induced microstructuring of two-dimensional layered inorganic-organic perovskites. Phys. Chem. Chem. Phys. 18, 9666 (2016).

    Article  CAS  Google Scholar 

  23. A.J. Bard, Photo electrochemistry and heterogeneous photo-catalysis at semiconductors. J. Photochem. 10, 59 (1979).

    Article  CAS  Google Scholar 

  24. G. Qin, Z. Qin, W.Z. Fang, L.C. Zhang, S.Y. Yue, Q.B. Yan, M. Hu, and G. Su, Diverse anisotropy of phonon transport in two-dimensional Group IV–VI compounds: a comparative study. Nanoscale 8, 11306 (2016).

    Article  CAS  Google Scholar 

  25. Y. Yang, S. Umrao, S. Lai, and S. Lee, Large-area highly conductive transparent two-dimensional Ti2CTX film. J. Phys. Chem. Lett. 8, 859 (2017).

    Article  CAS  Google Scholar 

  26. J. Dai, Z.Y. Li, J.L. Yang, and J.G. Hou, A first-principles prediction of two-dimensional superconductivity in pristine B2C single layers. Nanoscale 4, 3032 (2012).

    Article  CAS  Google Scholar 

  27. X. Luo, J. Yang, H. Liu, X. Wu, Y. Wang, Y. Ma, S. Wei, X. Gong, and H. Xiang, Predicting two-dimensional boroncarbon compounds by the global optimization method. J. Am. Chem. Soc 133, 16285 (2011).

    Article  CAS  Google Scholar 

  28. Z.H. Zhang, X. Liu, B.I. Yakobson, and W. Guo, Two-dimensional tetragonal TiC monolayer sheet and nanoribbons. J. Am. Chem. Soc. 134, 19326 (2012).

    Article  CAS  Google Scholar 

  29. Y.F. Li, Y.L. Liao, P. Schleyer, and Z.F. Chen, Al2C monolayer: the planar tetracoordinate carbon global minimum. Nanoscale 6, 10784 (2014).

    Article  CAS  Google Scholar 

  30. P. Giannozzi, S. Baroni, N. Bonini, M. Calandra, R. Car, C. Cavazzoni, D. Ceresoli, G.L. Chiarotti, M. Cococcioni, and I. Dabo, Quantum espresso: a modular and open-source software project for quantum simulations of materials. J. Phys. Cond. Matter 21, 395502 (2009).

    Article  Google Scholar 

  31. N. Troullier, and J.L. Martins, Efficient pseudopotentials for plane-wave calculations. Phys. Rev. B 43, 1993 (1991).

    Article  CAS  Google Scholar 

  32. R. Abt, C. Ambrosch-Draxl, and P. Knoll, Optical response of high temperature superconductors by full potential lapw band structure calculations. Physica B. 194, 1451 (1994).

    Article  Google Scholar 

  33. P. Blaha, K. Schwarz, G. Madsen, D. Kvasnicka, J. Luitz and K. Schwarz, An augmented PlaneWave+ Local Orbitals Program for calculating crystal properties revised edition WIEN2k 13.1 (release 06/26/2013).

  34. J.P. Perdew, K. Burke, and M. Ernzerhof, Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865 (1996).

    Article  CAS  Google Scholar 

  35. J. Heyd, and G.E. Scuseria, Hybrid functionals based on a screened coulomb potential. J. Chem. Phys. 118, 8207 (2003).

    Article  CAS  Google Scholar 

  36. F. Tran, and P. Blaha, Implementation of screened hybrid functionals based on the Yukava potential within the LAPW basis set. Phys. Rev. B 83, 235118 (2011).

    Article  Google Scholar 

  37. J. Dai, X. Wu, J. Yang, and X.C. Zeng, AlxC monolayer sheets: two-dimensional networks with planar tetracoordinate carbon and potential applications as donor materials in solar cell. J. Phys. Chem. Lett 5, 2058 (2014).

    Article  CAS  Google Scholar 

  38. W. Sun, Y. Li, B. Wang, X. Jiang, M. Katsnelson, P. Korzhavyi, O. Eriksson, and I. Marco, A new 2D monolayer BiXene, M2C (M=Mo, Tc, Os). Nanoscale 8, 15753 (2016).

    Article  CAS  Google Scholar 

  39. R.S. Mulliken, A new electroaffinity scale; together with data on valence states and on valence ionization potentials and electron affinities. J. Chem. Phys. 2, 782 (1934).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Mosayeb Naseri or D. M. Hoat.

Ethics declarations

Conflicts of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Naseri, M., Hoat, D.M., Sabbaghi, N. et al. Prediction of a Beryllium Phosphide Iodide Monolayer as a Photocatalyst for Water Splitting by Density Functional Theory. J. Electron. Mater. 51, 2077–2082 (2022). https://doi.org/10.1007/s11664-022-09451-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-022-09451-8

Keywords

Navigation