Skip to main content

Advertisement

Log in

Tunable Electronic Structure and Properties of h-BN Nanomaterials Under Elastic Strain

  • Original Research Article
  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

Among many two-dimensional materials, hexagonal boron nitride (h-BN) nanomaterials have attracted great attention due to their unique properties and potential applications. In this work, BN-related nanosheets, nanoribbons, and nanotubes are studied by density functional theory. Using energy band engineering, external strain and stacking are introduced into the above materials to tune the band gap. The modulation of the band gap of the BN sheet is linear under strain, and is reduced from 5.456 eV to 3.915 eV. At the same width of zigzag nanoribbons, the change in band gap is close to 3 eV when strain is applied, which will have potential applications in electronics, optoelectronics, stress sensors, and so on.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, Y. Zhang, S.V. Dubonos, I.V. Grigorieva, and A.A. Firsov, Science 306, 666–669 (2004).

    Article  CAS  Google Scholar 

  2. K.S. Novoselov, V.I. Fal’Ko, L. Colombo, P.R. Gellert, M.G. Schwab, and K. Kim, Nature 490, 192–200 (2012).

    Article  CAS  Google Scholar 

  3. C.L. Tan, X.H. Cao, X.J. Wu, Q.Y. He, J. Yang, X. Zhang, J.Z. Chen, W. Zhao, S.K. Han, G.H. Nam, M. Sindoro, and H. Zhang, Recent advances in ultrathin two-dimensional nanomaterials. Chem. Rev. 117, 6225–6331 (2017).

    Article  CAS  Google Scholar 

  4. Q. Tang, Z. Zhou, and Z.F. Chen, Innovation and discovery of graphene-like materials via density-functional theory computations. WIREs Comput Mol Sci 5, 360–379 (2015).

    Article  CAS  Google Scholar 

  5. X.L. Chen, Z.S. Zhou, B.C. Deng, Z.F. Wu, F.N. Xia, Y. Cao, L. Zhang, W. Huang, N. Wang, and L. Wang, Nano Today 27, 99–119 (2019).

    Article  CAS  Google Scholar 

  6. T. Hartman, and Z. Sofer, ACS Nano 13, 8566–8576 (2019).

    Article  CAS  Google Scholar 

  7. H. Huang, B. Jiang, X.M. Zou, X.Z. Zhao, and L. Liao, Science Bulletin 64, 1067–1079 (2019).

    Article  CAS  Google Scholar 

  8. Y.J. Xu, Z. Shi, X.Y. Shi, K. Zhang, and H. Zhang, Nanoscale 11, 14491 (2019).

    Article  CAS  Google Scholar 

  9. S. Poncé, W.B. Li, S. Reichardt, and F. Giustino, Rep Progress Phys 83, 036501 (2020).

    Article  Google Scholar 

  10. P. Ares, J.J. Palacios, G. Abellán, J. Gómez-Herrero, and F. Zamora, Adv. Mater. 30, 1703771 (2018).

    Article  Google Scholar 

  11. A.J. Lu, R.Q. Zhang, and S.T. Lee, Appl. Phys. Lett. 91, 263107 (2007).

    Article  Google Scholar 

  12. C. Zhang, A. De Sarkar, and R.Q. Zhang, J. Phys. Chem. C 115, 23682 (2011).

    Article  CAS  Google Scholar 

  13. N. Wang, J.J. He, K. Wang, Y.J. Zhao, T.G. Jiu, C.S. Huang, and Y.L. Li, Adv. Mater. 2019, 1803202.

  14. Z.Y. Jia, Y.J. Li, Z.C. Zuo, H.B. Liu, C.S. Huang, and Y.L. Li, Acc. Chem. Res. 50, 2470–2478 (2017).

    Article  CAS  Google Scholar 

  15. C.S. Huang, Y.J. Li, N. Wang, Y.R. Xue, Z.C. Zuo, H.B. Liu, and Y.L. Li, Chem. Rev. 118, 7744–7803 (2018).

    Article  CAS  Google Scholar 

  16. J. Kang, Z.M. Wei, J.B. Li, and A.C.S. Appl, Mater. Interfaces 11, 2692–2706 (2019).

    Article  CAS  Google Scholar 

  17. X. Zhang, Z.C. Lai, Q.L. Ma, and H. Zhang, Chem. Soc. Rev. 47, 3301 (2018).

    Article  Google Scholar 

  18. S.Q. Ma, F. Li, and C.L. Jiang, J. Electron. Mater. 45, 5412 (2016).

    Article  CAS  Google Scholar 

  19. S.Q. Ma, F. Li, J.G. Geng, M. Zhu, S.Y. Li, and J.G. Han, J. Electron. Mater. 47, 4615–4620 (2018).

    Article  CAS  Google Scholar 

  20. S.Q. Ma, W.S. Ma, F. Li, M. Zhu, J.G. Geng, and M. Li, RSC Adv. 7, 41084 (2017).

    Article  Google Scholar 

  21. S.Q. Ma, J.G. Han, F. Li, M. Zhu, J.G. Geng, and S.Y. Li, J. Electron. Mater. 48, 5125–5130 (2019).

    Article  CAS  Google Scholar 

  22. S.Q. Ma, F. Li, and J.G. Geng, J. Electron. Mater. 46, 2241 (2017).

    Article  CAS  Google Scholar 

  23. N. Mounet, M. Gibertini, P. Schwaller, D. Campi, A. Merkys, A. Marrazzo, T. Sohier, I.E. Castelli, A. Cepellotti, G. Pizzi, and N. Marzari, Nat. Nanotechnol. 13, 246–252 (2018).

    Article  CAS  Google Scholar 

  24. H.Z. Qu, S.Y. Guo, W.H. Zhou, S.L. Zhang, and I.E.E.E. Electron, IEEE Electon. Dev. Lett. 42, 66 (2021).

    Article  CAS  Google Scholar 

  25. V. Sharma, H.L. Kagdada, P.K. Jha, P. Śpiewak, and K.J. Kurzydłowski, Renew. Sustain. Energy Rev. 120, 109622 (2020).

    Article  CAS  Google Scholar 

  26. T.T. Li, C. He, W.X. Zhang, and A.C.S. Appl, Electron. Mater. 1, 34–43 (2019).

    CAS  Google Scholar 

  27. M.D. Esrafili, and F.A. Rad, Vacuum 166, 127–134 (2019).

    Article  CAS  Google Scholar 

  28. X. Zhou, W. Chu, Y.N. Zhou, W.J. Sun, and Y. Xue, Appl. Surf. Sci. 439, 246–253 (2018).

    Article  CAS  Google Scholar 

  29. C.M. Tang, X. Zhang, and X.F. Zhou, Phys. Chem. Chem. Phys. 19, 5570–5578 (2017).

    Article  CAS  Google Scholar 

  30. N.C. Zhang, J. Ren, and X.J. Peng, Fullerenes Nanotubes Carbon Nanostruct 24, 298–304 (2016).

    Article  CAS  Google Scholar 

  31. C.H. Jin, F. Lin, K. Suenaga, and S. Iijima, Phys. Rev. Lett. 102, 195505 (2009).

    Article  Google Scholar 

  32. Y. Lin, T.V. Williams, and J.W. Connell, J. Phys. Chem. Lett. 1, 277–283 (2010).

    Article  Google Scholar 

  33. L. Song, L.J. Ci, H. Lu, P.B. Sorokin, C.H. Jin, J. Ni, A.G. Kvashnin, D.G. Kvashnin, J. Lou, B.I. Yakobson, and P.M. Ajayan, Nano Lett. 10, 3209–3215 (2010).

    Article  CAS  Google Scholar 

  34. Y.M. Shi, C. Hamsen, X.T. Jia, K.K. Kim, A. Reina, M. Hofmann, A.L. Hsu, K. Zhang, H.N. Li, Z.Y. Juang, M.S. Dresselhaus, L.J. Li, and J. Kong, Nano Lett. 10, 4134–4139 (2010).

    Article  CAS  Google Scholar 

  35. K.H. Lee, H.J. Shin, J. Lee, I.Y. Lee, G.H. Kim, J.Y. Choi, and S.W. Kim, Nano Lett. 12, 714–718 (2012).

    Article  CAS  Google Scholar 

  36. R.Z. Li, X.C. Wang, L. Peng, B.W. Jiang, J.J. Yang, D. Yan, J. Pu, B. Chi, and J. Li, J. Alloy. Compd. 843, 1–7 (2020).

    Google Scholar 

  37. D.L. Li, W.L. Li, and J.P. Zhang, Appl. Surf. Sci. 525, 146567 (2020).

    Article  CAS  Google Scholar 

  38. X. Li, C. Huang, Y. Zhu, and C.L. Ma, Phys. Lett. A 384, 126483 (2020).

    Article  CAS  Google Scholar 

  39. R. Han, F. Liu, X.F. Wang, M.H. Huang, W.X. Li, Y. Yamauchi, X.D. Sun, and Z.G. Huang, J. Mater. Chem. A 8, 14384–14399 (2020).

    Article  CAS  Google Scholar 

  40. J.H. Meng, D.G. Wang, L.K. Cheng, M.L. Gao, and X.W. Zhang, Nanotechnology 30, 074003 (2019).

    Article  CAS  Google Scholar 

  41. B. Delley, J. Chem. Phys. 92, 508 (1990).

    Article  CAS  Google Scholar 

  42. B. Delley, J. Chem. Phys. 113, 7756 (2000).

    Article  CAS  Google Scholar 

  43. J.P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996).

    Article  CAS  Google Scholar 

  44. R.K. Ghosh, M. Brahma, and S. Mahapatra, IEEE Trans. Electron. Dev. 61, 2309 (2014).

    Article  CAS  Google Scholar 

  45. Y.F. Li, and Z.F. Chen, J. Phys. Chem. C 118, 1148 (2014).

    Article  CAS  Google Scholar 

  46. S. Grimme, J. Comput. Chem. 27, 1787 (2006).

    Article  CAS  Google Scholar 

  47. J. Heyd, G.E. Scuseria, and M. Ernzerhof, J. Chem. Phys. 124, 219906 (2006).

    Article  Google Scholar 

  48. L. Hu, J. Zhao, and J.L. Yang, J. Phys. Condens. Matter 26, 335302 (2014).

    Article  Google Scholar 

  49. Y. Zhang, X.J. Wu, Q.X. Li, and J.L. Yang, J. Phys. Chem. C 116, 9356 (2012).

    Article  CAS  Google Scholar 

  50. S.Q. Ma, and F. Li, Appl. Mech. Mater. 799–800, 171–174 (2015).

    Article  Google Scholar 

  51. M. Kan, J. Zhou, Q. Wang, Q. Sun, and P. Jena, Phys. Rev. B 84, 205412 (2011).

    Article  Google Scholar 

  52. M. Segall, P. Linda, M. Probert et al., Illustrations and the CASTEP code. J. Phys. Condens. Matter 14, 2717–2743 (2002).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Shengqian Ma or Qiang Wei.

Ethics declarations

Conflict of interest

There are no conflicts to declare.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ma, S., Jiang, C., Song, Q. et al. Tunable Electronic Structure and Properties of h-BN Nanomaterials Under Elastic Strain. J. Electron. Mater. 51, 1663–1668 (2022). https://doi.org/10.1007/s11664-022-09433-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-022-09433-w

Keywords

Navigation