Skip to main content
Log in

Study on New High-Pressure Phases and Electronic Properties of Iodine Chloride Employing Ab Initio Calculations

  • Original Research Article
  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

In regards to the crystal structure of the halogen compound iodine chloride (ICl), only the experimental and theoretical structure P21/c under ambient pressure is known up to now. However, the insulator material under ambient pressure may have a metal phase transition under high pressure, resulting in more excellent properties. Here, by employing the first-principles computations and the Crystal structure AnaLYsis with Particle Swarm Optimization (CALYPSO) structure prediction technique, we studied the structure and electronic properties of ICl under high pressure. The phase sequence of ICl was established, and two high-pressure phases (Imma and P4/mmm) with six and eight coordinations, respectively, were proposed. The structure optimization demonstrated that ICl sustained the following phase transitions at high pressure: P21/cImmaP4/mmm, which occurred at ~14 GPa and ~46 GPa, respectively. We also found that the P21/c phase was a mixed compound containing both covalent and ionic bonds, and the Imma and P4/mmm phases were ionic compounds. Finally, the mechanical and dynamical stabilities of all phases were confirmed by the calculations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Y.M. Ma, M. Eremets, A.R. Oganov, Y. Xie, I. Trojan, S. Medvedev, A.O. Lyakhov, M. Valle, and V. Prakapenka, Transparent dense sodium. Nature 458, 182 (2009). https://doi.org/10.1038/nature07786.

    Article  CAS  Google Scholar 

  2. L. Wang, H. Wang, and Y. Wang, Substitutional alloy of Bi and Te at high pressure. Phys. Rev. Lett. 106, 145501 (2011). https://doi.org/10.1103/PhysRevLett.106.145501.

    Article  CAS  Google Scholar 

  3. W. Yanchao, X. Meiling, Y. Liuxiang, and Y. Bingmin, Pressure-stabilized divalent ozonide CaO3and its impact on Earth’s oxygen cycles. Nat. Commun. 11, 1–7 (2020).

    Google Scholar 

  4. L.J. Zhang, Y.C. Wang, J. Lv, and Y. Ma, Materials discovery at high pressures. Nat. Rev. Mater. 2, 17005 (2017). https://doi.org/10.1038/natrevmats.2017.5.

    Article  CAS  Google Scholar 

  5. Y. Ma, M. Eremets, A.R. Oganov, Y. Xie, I. Trojan, S. Medvedev, A.O. Lyakhov, M. Valle, and V. Prakapenka, A hypervalent and cubically coordinated molecular phase of IF8predicted at high pressure. Chem. Sci. 10, 2543 (2019). https://doi.org/10.1039/C8SC04635B.

    Article  Google Scholar 

  6. C. Wang, Y.X. Liu, X. Chen, P. Lv, H.R. Sun, and X.B. Liu, Pressure-induced unexpected 2 oxidation states of bromine and superconductivity in magnesium bromide. Phys. Chem. Chem. Phys. 22, 3066 (2020). https://doi.org/10.1039/c9cp05627k.

    Article  CAS  Google Scholar 

  7. F. Tian, K. Luo, C.L. Xie, B. Liu, X.W. Liang, L.Y. Wang, G.A. Gamage, H.R. Sun, H. Ziyaee, J.Y. Sun, Z.S. Zhao, B. Xu, G.Y. Gao, and X.F. Zhou, Mechanical properties of boron arsenide single crystal. Appl. Phys. Lett. 114, 131903 (2019). https://doi.org/10.1063/1.5093289.

    Article  CAS  Google Scholar 

  8. A.G. Sharpe, Interhalogen compounds and polyhalides. Rev. Chem. Soc. 4, 115 (1950). https://doi.org/10.1039/QR9500400115.

    Article  CAS  Google Scholar 

  9. K.H. Boswijk, J. Heide, A. Vos, and E.H. Wiebenga, The Crystal Structure of α-ICl. Acta Cryst. 9, 274 (1956). https://doi.org/10.1107/S0365110X56000760.

    Article  CAS  Google Scholar 

  10. R. Minkwitz, M. Berkei, Neuuntersuchung der Kristall-strukturvon α-ICl,Zeitschrift F¨ur Naturforschung B, 54,1615 (1999) https://doi.org/10.1515/znb-1999-1224

  11. A. Jain, S.Y. Ping, G. Hautier, W. Chen, W.D. Richards, S. Dacek, S. Cholia, D. Gunter, D. Skinner, G. Ceder, and K.A. Persson, Commentary: The Materials Project: A materials genome approach to accelerating materials innovation. APL Mater. 1, 011002 (2013).

    Article  Google Scholar 

  12. F.D. Murnaghan, The compressibility of media under extreme pressures. Proc. N. A. S. 30, 244 (1944). https://doi.org/10.1073/pnas.30.9.244.

    Article  CAS  Google Scholar 

  13. A.D. Becke, and K.E. Edgecombe, A simple measure of electron localization in atomic and molecular systems. J. Chem. Phys. 92, 5397 (1990). https://doi.org/10.1063/1.458517.

    Article  CAS  Google Scholar 

  14. S. Baroni, S. Gironcoli, A.D. Corso, and P. Giannozzi, Phonons and related crystal properties from density-functionalperturbation theory. Rev. Mod. Phys. 73, 515 (2001). https://doi.org/10.1103/RevModPhys.73.515.

    Article  CAS  Google Scholar 

  15. Q.C. Tong, J. Lv, P.Y. Gao, and Y.C. Wang, The CALYPSO methodology for structure prediction. Chin. Phys. B 28, 106105 (2019). https://doi.org/10.1088/1674-1056/ab4174.

    Article  CAS  Google Scholar 

  16. Y.C. Wang, J. Lv, L. Zhu, and Y.M. Ma, CALYPSO: a method for crystals tructure prediction. Comput. Phys. Commun. 183, 2063 (2012). https://doi.org/10.1016/j.cpc.2012.05.008.

    Article  CAS  Google Scholar 

  17. Y.C. Wang, J. Lv, L. Zhu, and Y.M. Ma, Crystal structure prediction via particle-swarm optimization. Phys. Rev. B 82, 094116 (2010). https://doi.org/10.1103/PhysRevB.82.094116.

    Article  CAS  Google Scholar 

  18. J. Kennedy and R. Eberhart, MHS’95. Proceedings of the Sixth International Symposium on Micro Machine and Human Science, 39-43.IEEE, Nagoya, Japan (2002) https://doi.org/10.1109/MHS.1995.494215

  19. C. A. Coello and M. S. Lechuga, Proceedings of the 2002 Congress on Evolutionary Computation. CEC’02(Cat. No.02TH8600), 1051-1056.IEEE, Honolulu, HI,USA (2002) https://doi.org/10.1109/CEC.2002.1004388

  20. C. Tang, G. Kour, and A.J. Du, Recent progress on the prediction of two-dimensional materials using CALYPSO. Chin. Phys. B 28, 107306 (2019). https://doi.org/10.1088/1674-1056/ab41ea.

    Article  CAS  Google Scholar 

  21. S.S. Zhang, J.L. He, Z.S. Zhao, D.L. Yu, and Y.J. Tian, Discovery of superhard materials via CALYPSO methodology. Chin. Phys. B 28, 1061 (2019). https://doi.org/10.1088/1674-1056/ab4179.

    Article  CAS  Google Scholar 

  22. Y.C. Wang, M.S. Miao, J. Lv, L. Zhu, K.T. Yin, H.Y. Liu, and Y.M. Ma, An effective structure prediction method for layered materials based on 2D particle swarm optimization algorithm. J. Chem. Phys. 137, 224108 (2012). https://doi.org/10.1063/1.4769731.

    Article  CAS  Google Scholar 

  23. A. Hermann, Geoscience material structures prediction via CALYPSO methodology. Chin. Phys. B 28, 106105 (2019). https://doi.org/10.1088/1674-1056/ab43bc.

    Article  CAS  Google Scholar 

  24. W.W. Cui, and Y.W. Li, The role of CALYPSO in the discovery of high-Tchydrogen-rich superconductors. Chin. Phys. B 28, 107104 (2019). https://doi.org/10.1088/1674-1056/ab4253.

    Article  CAS  Google Scholar 

  25. S. Baroni, P. Giannozzi, and A. Testa, Green’s-function approach to linear response in solids. Phys. Rev. Lett. 58, 1861 (1987). https://doi.org/10.1103/PhysRevLett.58.1861.

    Article  CAS  Google Scholar 

  26. R.D. King-Smith, and R.J. Needs, A new and efficient scheme for first-principles calculations of phonon spectra. J. Phys. Condens. Matter 2, 3431 (1990). https://doi.org/10.1088/0953-8984/2/15/001.

    Article  Google Scholar 

  27. G. Kresse, and J. Furthmüller, Efficient iterative schemes forab initiototal-energy calculations using a plane-wave basis set. Phys. Rev. B 54, 11169 (1996). https://doi.org/10.1103/PhysRevB.54.11169.

    Article  CAS  Google Scholar 

  28. J.P. Perdew, J.A. Chevary, S.H. Vosko, K.A. Jackson, M.P. Pederson, D.J. Singh, and C. Fiolhais, Atoms, molecules, solids, and surfaces: applications of the generalized gradient approximation for exchange and correlation. Phys. Rev. B 46, 6671 (1993). https://doi.org/10.1103/PhysRevB.46.6671.

    Article  Google Scholar 

  29. J.P. Perdew, K. Burke, and M. Ernzerhof, Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865 (1996). https://doi.org/10.1103/PhysRevLett.77.3865.

    Article  CAS  Google Scholar 

  30. J. Hao, Y.W. Li, Q. Zhou, D. Liu, M. Li, F.F. Li, W.W. Lei, X.H. Chen, Y.M. Ma, Q.L. Cui, G.T. Zou, J. Liu, and X.D. Li, Structural phase transformations of Mg3N2 at high pressure: experimental and theoretical studies. Inorg. Chem. 48, 9737 (2009). https://doi.org/10.1021/ic901324n.

    Article  CAS  Google Scholar 

  31. A.V. Krukau, O.A. Vydrov, A.F. Izmaylov, and G.E. Scuseria, Influence of the exchange screening parameter on the performance ofscreened hybrid functionals. J. Chem. Phys. 125, 224106 (2006). https://doi.org/10.1063/1.2404663.

    Article  CAS  Google Scholar 

  32. J. Heyd, G.E. Scuseria, and M. Ernzerhof, Hybrid functionals based on a screened Coulomb potential. J. Chem. Phys. 118, 8207 (2003). https://doi.org/10.1063/1.1564060.

    Article  CAS  Google Scholar 

  33. P.E. Blochl, Project oraugmented-wave method. Phys. Rev. B 50, 17953 (1994). https://doi.org/10.1103/PhysRevB.50.17953.

    Article  CAS  Google Scholar 

  34. K. G and J. D, From ultrasoft pseudopotentials to the projector augmented-wave method, Phys. Rev. B, 59, 1758 (1999) https://doi.org/10.1103/PhysRevB.59.1758

  35. D.J. Chadi, Special points for Brilloofn-zone integrations. Phys. Rev. B 16, 1746 (1977). https://doi.org/10.1103/PhysRevB.16.1746.

    Article  Google Scholar 

  36. V. Wang, N. Xu, J.C. Liu, G. Tang, and W.T. Geng, V ASPKIT: a user-friendly interface facilitating high-throughput computing and analysis using V ASP code. Comput. Phys. Commun. 267, 108033 (2021). https://doi.org/10.1016/j.cpc.2021.108033.

    Article  CAS  Google Scholar 

  37. J.Y. Lin, Z.Y. Zhao, C.Y. Liu, J. Zhang, X. Du, G.C. Yang, and Y.M. Ma, IrF8 molecular crystal under high pressure. J. Am. Chem. Soc. 141, 5409 (2019). https://doi.org/10.1021/jacs.9b00069.

    Article  CAS  Google Scholar 

  38. L.J. Zhang, X. Bao, Y. Sun, X.J. Ma, T.J. Ou, and P.F. Li, High-pressure crystal structure and properties of BrCl. J. Phys. Condens. Matter 33, 095401 (2020). https://doi.org/10.1088/1361-648X/abcc10.

    Article  Google Scholar 

  39. X. Zhong, L.H. Yang, X. Qu, Y.C. Wang, J.H. Yang, and Y.M. Ma, Crystal structures and electronic properties of oxygen-rich titanium oxides at high pressure. Inorg. Chem. 57, 3254 (2018). https://doi.org/10.1021/acs.inorgchem.7b03263.

    Article  CAS  Google Scholar 

  40. J.Y. Lin, S.T. Zhang, W. Guan, G.C. Yang, and Y.M. Ma, Gold with +4 and +6 oxidation states in AuF4 and AuF6. J. Am. Chem. Soc. 140, 9545 (2018). https://doi.org/10.1021/jacs.8b04563.

    Article  CAS  Google Scholar 

  41. F.X. Ma, Y.L. Jiao, G.P. Gao, Y.T. Gu, A. Bilic, Z.F. Chen, and A.J. Du, Graphene-like two-dimensional ionic boron with double dirac cones at ambient condition. Nano Lett. 15, 3022 (2016). https://doi.org/10.1021/acs.nanolett.5b05292.

    Article  CAS  Google Scholar 

  42. F. Mouhat, and F.X. Coudert, Necessary and sufficient elastic stability conditionsin variouscrystal systems. Phys. Rev. B 90, 224104 (2014). https://doi.org/10.1103/PhysRevB.90.224104.

    Article  CAS  Google Scholar 

  43. S.F. Pugh, XCII Relations between the elastic moduli and the plastic properties of polycrystalline pure metals. Lond. Edinb. Dublin Philosophical Mag. J. Sci. 45, 823 (1954). https://doi.org/10.1080/14786440808520496.

    Article  CAS  Google Scholar 

  44. V. Kanchana, G. Vaitheeswaran, Y. Ma, Y. Xie, A. Svane, and O. Eriksson, Density functional study of elastic and vibrational properties of the Heusler-type alloys Fe2V Al and Fe2VGa. Phys. Rev. B 80, 125108 (2009). https://doi.org/10.1103/PhysRevB.80.125108.

    Article  CAS  Google Scholar 

  45. C.M. Blair Jr., and D.M. Yost, The thermodynamic constants of iodine monochloride, iodine monobromide and bromine monochloride in carbon tetrachloride solutions. J. Am. Chem. Soc. 55, 4489–4496 (1933). https://doi.org/10.1021/ja01338a026.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (No. 11964026), the Natural Science Basic Research plan in Shaanxi Province of China (No. 2020JM-621), the Natural Science Foundation of Inner Mongolia (Nos. 2019MS01010, 2020BS01001, 2020BS01009), the Scientific Research Projects in Colleges and Universities in Inner Mongolia (No. NJZZ19145), the Projects in Inner Mongolia Minzu University (Nos. BS511, NMDYB18021, BS531, BS439).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peifang Li.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bao, X., Feng, L., Zhang, X. et al. Study on New High-Pressure Phases and Electronic Properties of Iodine Chloride Employing Ab Initio Calculations. J. Electron. Mater. 51, 1632–1638 (2022). https://doi.org/10.1007/s11664-021-09424-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-021-09424-3

Keywords

Navigation