Skip to main content
Log in

The Influence of Growth Parameters of Strain InGaAs Quantum Wells on Luminescent Properties

  • Original Research Article
  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

InGaAs/GaAs single quantum wells (QWs) were grown on oriented GaAs substrates by metal-organic chemical vapor deposition (MOCVD). Photoluminescence (PL) measurement at room temperature was applied to characterize the optical properties of QWs. The effects of offcut substrates, growth temperature, growth rate and V/III ratio on optical properties were investigated. For 1060-nm InGaAs/GaAs quantum wells, the results show that when the growth temperature is 600°C, the V/III ratio is 43, and the growth rate is 1.15 µm/h, the quality of the quantum well is better. With the decrease of growth temperature, the PL intensity increased significantly. When the temperature is 600°C, the PL intensity is 121% and 52% higher than the other two samples, respectively. FWHM was reduced by 35% and 46% compared with the other two samples, respectively. When the growth rate increased, the PL intensity enhanced 75%, while the FWHM decreased 5%. It can be found that the FWHM decreased greatly and a blueshift occurred with the increase of the growth rate proving that the crystal quality is greatly improved. Increased V/III ratio can improve the growth quality and optical characteristics of InGaAs/GaAs QWs. The wavelength of samples showed a redshift with increased V/III ratio.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data Availability

Some or all data, models, or code generated or used during the study are available from the corresponding author by request.

References

  1. S. Beyert, S. Zorn, T. Kubler, H. Wenzel, and M. Weyers, Optical in-well pumping of a semiconductor disk laser with high optical efficiency. Quantum Electron. 41, 1439 (2005).

    Article  Google Scholar 

  2. A.C. Tropper, and S. Hoogland, Extended cavity surface-emitting semiconductor lasers. Prog. Quantum Electron. 30, 1 (2006).

    Article  Google Scholar 

  3. W. Wegscheider, L. Pfeiffer, and K. West, Current injection GaAs/AlGaAs quantum wire lasers fabricated by cleaved edge overgrowth. Appl. Phys. Lett 65, 2510–2512 (1994).

    Article  CAS  Google Scholar 

  4. D. Wang, Recent research progress and application status of semiconductor lasers. Opt. Precis. Eng. 9, 279–283 (2001).

    Article  CAS  Google Scholar 

  5. R.J. Min, and N. Khilnani, Endovenous laser treatment of saphenous vein reflux: long-term results. J. Vasc. Interv. Radiol. 14, 991–996 (2003).

    Article  Google Scholar 

  6. W. Pötz, and D.K. Ferry, Strain-dependence of localized states in quantum-well structures. J. Vac. Sci. Technol. 4, 1006 (1986).

    Article  Google Scholar 

  7. D. Schlenker, T. Miyamoto, and Z. Chen, Growth of highly strained GaInAs/GaAs quantum wells for 1.2 um wavelength lasers. Cryst. Growth 209, 27 (2000).

    Article  CAS  Google Scholar 

  8. H.H. Tan, P. Lever, and C. Jagadish, Growth of highly strained InGaAs quantum wells on GaAs substrates-effect of growth rate. J. Cryst. Growth. 274, 85 (2005).

    Article  CAS  Google Scholar 

  9. W. Gao*, A. Mastrovito, K. Luo, L. Cheng, A. Nelson, T. Yang, Z. Xu, High power 1060 nm InGaAs/GaAs single-mode laser diodes. 12 (2013).

  10. J.Q. Pan, B.B. Huang et al., MOCVD growth of InGaAs/GaAs quantum well for 1064 nm LDs. J. Optoelectron. Laser 14, 590 (2003).

    Google Scholar 

  11. T. Li, E. Hao, Z. Li, Y. Wang, P. Lu, and Y. Qu, Waveguide structure optimization of high power 1060nm semiconductor laser. J. Infrared Millim. Wave 31, 226 (2012).

    Article  Google Scholar 

  12. J.I. Chyi, and J.L. Shieh, Material properties of compositional graded InxGa1xAs and InxAl1xAs epilayers grown on GaAs substrates. J. Appl. Phys. 79, 8367 (1996).

    Article  CAS  Google Scholar 

  13. P. Werner, and N.D. Zakharov, Stress releasing mechanisms in In0.2Ga0.8As layers grown on misoriented GaAs [001] substrate. Appl. Phys. Lett. 62, 2798 (1993).

    Article  CAS  Google Scholar 

  14. W. Chengtien, S. Yankuin, and R.W. Chuang, Improving photoluminescence of highly strained 132 µm GaAsSb/GaAs multiple quantum wells grown on misorientation substrate. J. Cryst. Growth 310, 4854–4857 (2008).

    Article  Google Scholar 

  15. Y. Huibo, L. Lin, and Q. Zhongliang, Optical characteristics of GaAsP/GaInP quantum well grown by metal organic chemical vapor deposition. Chin. J. Lasers 41, 0506002 (2014).

    Article  Google Scholar 

  16. D.H. Rich, and K. Rammohan, Influence of GaAs(001) substrate misorientation towards 111 on the optical properties of InxGa1−xAs/GaAs. Sci. Technol. Mater. 13, 1766 (1995).

    CAS  Google Scholar 

  17. S.M. Wang, T.G. Andersson, and M.J. Ekenstedt, Temperature-dependent transition from two-dimentional to three-dimensional growth in highly strained InxGa1−xAs/GaAs (0.365 ≤ x ≤ 1) single quantum wells. Appl. Phys. Lett. 61, 3139 (1992).

    Article  CAS  Google Scholar 

  18. S.M. Wang, T.G. Andersson, and M.J. Ekenstedt, Temperature dependent transition from two-dimentional to three-dimensional growth in highly strained InxGa1−xAs/GaAs (0.365 ≤ x ≤ 1) single quantum wells. Appl. Phys. Lett. 61, 3139 (1992).

    Article  CAS  Google Scholar 

  19. D. Schlenker, T. Miymoto, and Z. Chen, Growth of highly strained GaInAs/GaAs quantum wells for 12 μm wavelength lasers. J. Cryst. Growth 209, 27 (2000).

    Article  CAS  Google Scholar 

  20. Y. Zhou, Y.B. Sun, X. Zhou, W.Q. Liu, and X.B. Yang, Growth of high strained InGaAs/GaAs/AlGaAs mini-band supper-lattices for middle wavelength infrared QWIP detectors. Semiconductor Optoelectron. 34, 221 (2013).

    CAS  Google Scholar 

  21. D. Schlenker, T. Miymoto, Z. Chen, F. Koyama, and K. Iga, Growth of highly strained GaInAs/GaAs quantum wells for 1.2 μm wavelength lasers. Cryst. Growth 209, 27 (2000).

    Article  CAS  Google Scholar 

  22. J. Guozhi, and Y. Jianghong, Influence of growth temperature and structure parameters on optical characteristic InGaAs/GaAs QuantumWells. Chin. J. Lumin. 29, 325 (2008).

    Google Scholar 

  23. F. Bugge, U. Zeimer, and M. Sato, MOVPE growth of highly strained InGaAs/GaAs quantum wells. J. Cryst. Growth 183, 511 (1998).

    Article  CAS  Google Scholar 

  24. A. Jasik, A. Wnuk, J. Gaca, M. Wójcik, A. Wójcik-Jedlińska, J. Muszalski, and W. Strupiński, Theinfluence of the growth rate and V/III ratio on the crystal quality of InGaAs/GaAs QW structures grown by MBE and MOCVD methods. J. Cryst. Growth 311, 4432 (2009).

    Google Scholar 

  25. D. Schlenker, T. Miyamoto, and Z. Chen, Growth of highly strained GaInAs/GaAs quantum wells for 1.2 μm wavelength lasers. J. Cryst. Growth 209, 27 (2000).

    Article  CAS  Google Scholar 

  26. A. Jasik, A. Wnuk, and J. Gaca, The influence of the growth rate and V/III ratio on the crystal quality of InGaAs/GaAs QW structures grown by MBE and MOCVD methods. J. Cryst. Growth 311, 4423 (2009).

    Article  CAS  Google Scholar 

  27. J. Hellara, F. Hassen, and H. Maaref, Alloy broadening effect on optical properties of InGaAs grown by MOCVD with TMAs precursor. Microelectron. J. 35, 207 (2004).

    Article  CAS  Google Scholar 

  28. J. Niu, Optimum structural design for QW laser material andgrown by MOCVD, M.S. Thesis (Hebei University of Technology, 2004).

  29. D. Schlenker, T. Miyamoto, Z. Chen, F. Koyama, and K. Iga, Growth of highly strained GaInAs/GaAs quantum wells for 12 µm wavelength lasers. J. Crystal Growth 209, 30 (2000).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lei Gu.

Ethics declarations

Conflict of interest

On behalf of all authors, I declare no competing interests exist.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gu, L., Meng, J. The Influence of Growth Parameters of Strain InGaAs Quantum Wells on Luminescent Properties. J. Electron. Mater. 51, 1421–1427 (2022). https://doi.org/10.1007/s11664-021-09394-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-021-09394-6

Keywords

Navigation