Skip to main content
Log in

Linear and Nonlinear Optical Characterization of Dye–Polymer Composite Films Based on Methylcellulose Incorporated with Varying Content of Methylene Blue

  • Original Research Article
  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

Compositional dependence of the linear and nonlinear optical characteristics of dye–polymer composite (DPC) films based on methylcellulose-methylene blue (MC-MB) were studied. The absorbance spectra were used to estimate absorption edge, optical density, skin depth, optical band gap energy, and Urbach's parameters for all DPC films. The direct allowed optical band gap energy decreased from 6.29 eV for pure MC to 5.95 eV when doped with 2.5 wt.% of MB. The dispersion of the refractive index is discussed in terms of both the single-oscillator Wemple–DiDomenico and single Sellmeier oscillator models. The nonlinear optical characteristics such as the third-order nonlinear optical susceptibility and nonlinear refractive index were calculated using the dispersive oscillator parameters obtained from the single-oscillator model. The observed improvements in the linear and nonlinear optical characteristics of MC upon incorporating MB make the present DPC a potential candidate for multifunctional applications like optoelectronic and photonic devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8
Fig. 9.
Fig. 10.
Fig. 11.
Fig. 12.

Similar content being viewed by others

References

  1. Z.A. Alrowaili, M. Ezzeldien, M.I. Mohammed, and I.S. Yahia, Design of a low-cost laser CUT-OFF filters using carmine dye-doped PVA polymeric composite films. Results Phys. 18, 103203 (2020).

    Article  Google Scholar 

  2. O.G. Abdullah, Y.A.K. Salman, and S.A. Saleem, Electrical conductivity and dielectric characteristics of in situ prepared PVA/HgS nanocomposite films. J. Mater. Sci. Mater. Electron. 27, 3591 (2016).

    Article  CAS  Google Scholar 

  3. F.J. Hameed, I.M. Ibrahim, O.G. Abdullah, and M.H. Suhai, Enhancing optical and electrical gas sensing properties of polypyrrole nanoplate by dispersing nano-sized tungsten oxide. ECS J. Solid State Sci. Technol. 10, 107001 (2021).

    Article  CAS  Google Scholar 

  4. M.M. Abdelhamied, A. Atta, A.M. Abdelreheem, A.T.M. Farag, and M.M. El Okr, Synthesis and optical properties of PVA/PANI/Ag nanocomposite films. J. Mater. Sci. Mater. Electron. 31, 22629 (2020).

    Article  CAS  Google Scholar 

  5. O.G. Abdullah, and S.A. Saleem, Effect of copper sulfide nanoparticles on the optical and electrical behavior of poly (vinyl alcohol) films. J. Electron. Mater. 45, 5910 (2016).

    Article  CAS  Google Scholar 

  6. V. Hebbar, R.F. Bhajantri, J. Naik, and S.G. Rathod, Thiazole yellow G dyed PVA films for optoelectronics: microstructrural, thermal and photophysical studies. Mater. Res. Express 3, 075301 (2016).

    Article  Google Scholar 

  7. A.F. Abdulameer, M.H. Suhail, O.G. Abdullah, and I.M. Al-Essa, Fabrication and characterization of NiPcTs organic semiconductors based surface type capacitive-resistive humidity sensors. J. Mater. Sci. Mater. Electron. 28, 13472 (2017).

    Article  CAS  Google Scholar 

  8. T.A. Skotheim, J.R. Reynolds, and B.C. Thompson, Handbook of Conducting Polymers-Conjugated Polymers: Properties, Processing and Applications (CRC Press, Taylor & Francis Group, 2019).

    Google Scholar 

  9. S. Sreedhar, N. Illyaskutty, S. Sreedhanya, R. Philip, and C.I. Muneera, An organic dye-polymer (phenol red-poly (vinyl alcohol)) composite architecture towards tunable -optical and -saturable absorption characteristics. J. Appl. Phys. 119, 193106 (2016).

    Article  Google Scholar 

  10. D. Ghoshal, D. Bhattacharya, D. Mondal, S. Das, N. Bose, and M. Basu, Methylene blue/PVA composite film for flexible, wide-scale UV–VIS laser cut-off filter. Mater. Res. Express 6, 075332 (2019).

    Article  CAS  Google Scholar 

  11. H.T. Ahmed, and O.G. Abdullah, Preparation and composition optimization of PEO:MC polymer blend films to enhance electrical conductivity. Polymers 11, 853 (2019).

    Article  Google Scholar 

  12. P.L. Nasatto, F. Pignon, J.L.M. Silveira, M.E.R. Duarte, M.D. Noseda, and M. Rinaudo, Methylcellulose, a cellulose derivative with original physical properties and extended applications. Polymers 7, 777 (2015).

    Article  CAS  Google Scholar 

  13. O.G. Abdullah, H.T. Ahmed, D.A. Tahir, G.M. Jamal, and A.H. Mohamad, Influence of PEG plasticizer content on the proton-conducting PEO:MC-NH4I blend polymer electrolytes based films. Results Phys. 23, 104073 (2021).

    Article  Google Scholar 

  14. R. Begum, J. Najeeb, A. Sattar, K. Naseem, A. Irfan, A.G. Al-Sehemi, and Z.H. Farooqi, Chemical reduction of methylene blue in the presence of nanocatalysts: a critical review. Rev. Chem. Eng. 36, 749 (2020).

    Article  CAS  Google Scholar 

  15. O.G. Abdullah, Y.A.K. Salman, D.A. Tahir, G.M. Jamal, H.T. Ahmed, A.H. Mohamad, and A.K. Azawy, Effect of ZnO nanoparticle content on the structural and ionic transport parameters of polyvinyl alcohol based proton–conducting polymer electrolyte membranes. Membranes 11, 163 (2021).

    Article  CAS  Google Scholar 

  16. M.H. Suhail, O.G. Abdullah, and G.A. Kadhim, Hydrogen sulfide sensors based on PANI/f–SWCNT polymer nanocomposite thin films prepared by electrochemical polymerization. J. Sci. Adv. Mater. Dev. 4, 143 (2019).

    Google Scholar 

  17. O.G. Abdullah, D.A. Tahir, and K. Kadir, Optical and structural investigation of synthesized PVA/PbS nanocomposites. J. Mater. Sci. Mater. Electron. 26, 6939 (2015).

    Article  CAS  Google Scholar 

  18. V.P. Dinh, T.D.T. Huynh, H.M. Le, V.D. Nguyen, V.A. Dao, N.Q. Hung, L.A. Tuyen, S. Lee, J. Yi, T.D. Nguyen, and L.V. Tan, Insight into the adsorption mechanisms of methylene blue and chromium(III) from aqueous solution onto pomelo fruit peel. RSC Adv. 9, 25847 (2019).

    Article  CAS  Google Scholar 

  19. R. Zuo, G. Du, W. Zhang, L. Liu, Y. Liu, L. Mei, and Z. Li, Photocatalytic degradation of methylene blue using TiO2 impregnated diatomite. Adv. Mater. Sci. Eng. 2014, 170148 (2014).

    Article  Google Scholar 

  20. T.A. Devi, N. Ananthi, and T.P. Amaladhas, Photobiological synthesis of noble metal nanoparticles using Hydrocotyle asiatica and application as catalyst for the photodegradation of cationic dyes. J. Nanostruct. Chem. 6, 75 (2016).

    Article  CAS  Google Scholar 

  21. A.H. Mohamad, S.R. Saeed, and O.G. Abdullah, Synthesis of very–fine PbS nanoparticles dispersed homogeneously in MC matrix: effect of concentration on the structural and optical properties of the host polymer. Mater. Res. Express 6, 115332 (2019).

    Article  Google Scholar 

  22. O.G. Abdullah, R.R. Hanna, and Y.A.K. Salman, Structural and electrical conductivity of CH:MC bio–poly–blend films: Optimize the perfect composition of the blend system. Bull. Mater. Sci. 42, 64 (2019).

    Article  Google Scholar 

  23. S. Gao, R. Cao, and C. Yang, Dye–polyoxometalate composite films: self-assembly, thermal and photochemical properties. J. Colloid. Interf. Sci. 324, 156 (2008).

    Article  CAS  Google Scholar 

  24. R.T. Abdulwahid, O.G. Abdullah, S.B. Aziz, S.A. Hussein, F.F. Muhammad, and M.Y. Yahya, The study of structural and optical properties of PVA:PbO2 based solid polymer nanocomposites. J. Mater. Sci. Mater. Electron. 27, 12112 (2016).

    Article  CAS  Google Scholar 

  25. A.S. Hassanien, and A.A. Akl, Effect of Se addition on optical and electrical properties of chalcogenide CdSSe thin films. Superlattice Microstruct. 89, 153 (2016).

    Article  CAS  Google Scholar 

  26. R.N. Abed, E. Yousif, A.R.N. Abed, A.A. Rashad, A. Hadawey, and A.H. Jawad, Optical properties of PVC composite modified during light exposure to give high absorption enhancement. J. Non-Cryst. Solids 570, 120946 (2021).

    Article  CAS  Google Scholar 

  27. J. Tauc, Amorphous and Liquid Semiconductors (New York: Plenum, 1974).

    Book  Google Scholar 

  28. N.F. Mott, and E.A. Davis, Electronic Processes in Non-crystalline Materials (Oxford: Clarendon Press, 1979).

    Google Scholar 

  29. O.G. Abdullah, S.B. Aziz, and M.A. Rasheed, Effect of silicon powder on the optical characterization of poly(methyl methacrylate) polymer composites. J. Mater. Sci. Mater. Electron. 28, 4513 (2017).

    Article  CAS  Google Scholar 

  30. O.G. Abdullah, R.R. Hanna, and Y.A.K. Salman, Structural, optical, and electrical characterization of chitosan: methylcellulose polymer blends based film. J. Mater. Sci. Mater. Electron. 28, 10283 (2017).

    Article  CAS  Google Scholar 

  31. F. Urbach, The long-wavelength edge of photographic sensitivity and of the electronic absorption of solids. Phys. Rev. 92, 1324 (1953).

    Article  CAS  Google Scholar 

  32. O.G. Abdullah, B.K. Aziz, S.B. Aziz, and M.H. Suhail, Surfaces modification of methylcellulose: cobalt nitrate polymer electrolyte by sulfurated hydrogen gas treatment. J. Appl. Polym. Sci. 135, 46676 (2018).

    Article  Google Scholar 

  33. A. Shubha, and S.R. Manohara, Effect of graphene nanoplatelets concentration on optical, dielectric and electrical properties of poly(2-ethyl-2-oxazoline)–polyvinylpyrrolidone–graphene nanocomposites. J. Mater. Sci. Mater. Electron. 31, 16498 (2020).

    Article  CAS  Google Scholar 

  34. S.F. Bdewi, O.G. Abdullah, B.K. Aziz, and A.A.R. Mutar, Synthesis, structural and optical characterization of MgO nanocrystalline embedded in PVA matrix. J. Inorg. Organomet. Polym. Mater. 26, 326 (2016).

    Article  CAS  Google Scholar 

  35. O.G. Abdullah, Synthesis of single-phase zinc chromite nano-spinel embedded in polyvinyl alcohol films and its effects on energy band gap. J. Mater. Sci. Mater. Electron. 27, 12106 (2016).

    Article  CAS  Google Scholar 

  36. P.J.L. Herve, and L.K.J. Vandamme, Empirical temperature dependence of the refractive index of semiconductors. J. Appl. Phys. 77, 5476 (1995).

    Article  CAS  Google Scholar 

  37. N.M. Ravindra, S. Auluck, and V.K. Srivastava, On the Penn gap in semiconductors. Phys. Status Solidi B 93, K155 (1979).

    Article  CAS  Google Scholar 

  38. M.I. Amer, S.H. Moustafa, and M. El-Hagary, Enhanced band structure, optoelectronic and magnetic properties of spray pyrolysis Ni-doped SnO2 nanostructured films. Mater. Chem. Phys. 248, 122892 (2020).

    Article  CAS  Google Scholar 

  39. S.H. Wemple, and M. DiDomenico, Behavior of the electronic dielectric constant in covalent and ionic materials. Phys. Rev. B 3, 1338 (1971).

    Article  Google Scholar 

  40. O.G. Abdullah, S.B. Aziz, K.M. Omer, and Y.M. Salih, Reducing the optical band gap of polyvinyl alcohol (PVA) based nanocomposite. J. Mater. Sci. Mater. Electron. 26, 5303 (2015).

    Article  CAS  Google Scholar 

  41. P. Tao, Y. Li, A. Rungta, A. Viswanath, J. Gao, B.C. Benicewicz, R.W. Siegel, and L.S. Schadler, TiO2 nanocomposites with high refractive index and transparency. J. Mater. Chem. 21, 18623 (2011).

    Article  CAS  Google Scholar 

  42. J. Jin, R. Qi, Y. Su, M. Tong, and J. Zhu, Preparation of high-refractive-index PMMA/TiO2 nanocomposites by one-step in situ solvothermal method. Iran. Polym. J. 22, 767 (2013).

    Article  CAS  Google Scholar 

  43. M. El-Hagary, S.H. Moustafa, M.I. Amer, G.M.A. Gad, M.E. Ismail, and H. Hashem, Linear, non-linear optical properties and magnetic studies of spray pyrolysis nanocrystalline Sn1-xCoxO2 films for multifunctional optoelecronic and spintronic applications. J. Mater. Res. Technol. 13, 2310 (2021).

    Article  CAS  Google Scholar 

  44. T.A. Hameed, F. Mohamed, A.M. Abdelghany, and G. Turky, Influence of SiO2 nanoparticles on morphology, optical, and conductivity properties of poly (ethylene oxide). J. Mater. Sci. Mater. Electron. 31, 10422 (2020).

    Article  CAS  Google Scholar 

  45. A. Atta, M.M. Abdelhamied, A.M. Abdelreheem, and M.R. Berber, Flexible methyl cellulose/polyaniline/silver composite films with enhanced linear and nonlinear optical properties. Polymers 13, 1225 (2021).

    Article  CAS  Google Scholar 

  46. H. Ticha, and L. Tichy, Semiempirical relation between non-linear susceptibility (refractive index), linear refractive index and optical gap and its application to amorphous chalcogenides. J. Optoelectron. Adv. Mater. 4, 381 (2002).

    CAS  Google Scholar 

  47. R.W. Boyd, Nonlinear Optics, 3rd ed., (Amsterdam: Elsevier Science, 2008).

    Google Scholar 

  48. J. Cimek, N. Liaros, S. Couris, R. Stepien, M. Klimczak, and R. Buczynski, Experimental investigation of the nonlinear refractive index of various soft glasses dedicated for development of nonlinear photonic crystal fibers. Opt. Mater. Express 7, 3471 (2017).

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge the staff of the Advanced Materials Research Laboratory, Department of Physics, College of Science at the University of Sulaimani, for providing facilities in their laboratory.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Omed Gh. Abdullah.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abdullah, O.G., Salh, D.M., Mohamad, A.H. et al. Linear and Nonlinear Optical Characterization of Dye–Polymer Composite Films Based on Methylcellulose Incorporated with Varying Content of Methylene Blue. J. Electron. Mater. 51, 675–683 (2022). https://doi.org/10.1007/s11664-021-09322-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-021-09322-8

Keywords

Navigation