Skip to main content
Log in

Improved Thermal Properties of Three-Dimensional Graphene Network Filled Polymer Composites

  • Original Research Article
  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

This paper presents the improved thermal property of three-dimensional (3D) graphene network modified polydimethylsiloxane (PDMS) composites. It shows that with a 2 wt.% loading of graphene foams (GF), the thermal conductivity of GF/PDMS composite was successfully increased from 0.19 W/mK to 0.42 W/mK, which is 2.2 times higher than that of neat PDMS. However, if GF was transformed into graphene sheets (GS) by sonication, the thermal conductivity of GS/PDMS was decreased to 0.28 W/mK. The remarkable improvement of the thermal properties is attributed to the 3D interconnected graphene network in GF, which form continuous heat transfer networks. Furthermore, the finite element analysis was conducted to evaluate the effect of GFs in composites, where some parameters such as thickness and thermal conductivity were analyzed and discussed. Our results indicate that the continuous 3D GFs holds great potential as fillers to improve the thermal property of polymer materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Y. Zhang, H. Han, N. Wang et al., Adv. Funct. Mater. 25, 4430 (2015). https://doi.org/10.1002/adfm.201500990.

    Article  CAS  Google Scholar 

  2. H. Han, Y. Zhang, N. Wang et al., Nat. Commun. 7, 11281 (2016). https://doi.org/10.1038/ncomms11281.

    Article  CAS  Google Scholar 

  3. X.Y. Huang, P.K. Jiang, and T. Tanaka, IEEE Electr. Insul. M. 27, 8 (2011). https://doi.org/10.1109/Mei.2011.5954064.

    Article  Google Scholar 

  4. H. Chen, V.V. Ginzburg, J. Yang et al., Prog. Polym. Sci. 59, 41 (2016). https://doi.org/10.1016/j.progpolymsci.2016.03.001.

    Article  CAS  Google Scholar 

  5. E.C. Cho, C.W. Chang-Jian, Y.S. Hsiao, K.C. Lee, and J.H. Huang, Compos. Part a-Appl. S 90, 678 (2016). https://doi.org/10.1016/j.compositesa.2016.08.035.

    Article  CAS  Google Scholar 

  6. H.M. Fang, X. Zhang, Y.H. Zhao, and S.L. Bai, Compos. Sci. Technol. 152, 243 (2017). https://doi.org/10.1016/j.compscitech.2017.09.032.

    Article  CAS  Google Scholar 

  7. D.Z. Wang, Y. Lin, D.W. Hu, P.K. Jiang, and X.Y. Huang, Compos. Part a-Appl. S (2020). https://doi.org/10.1016/j.compositesa.2019.105754.

    Article  Google Scholar 

  8. L. Pezzana, G. Riccucci, S. Spriano, D. Battegazzore, M. Sangermano, and A. Chiappone, Nanomaterials (2021). https://doi.org/10.3390/nano11020373.

    Article  Google Scholar 

  9. K.S. Novoselov, A.K. Geim, S.V. Morozov et al., Science 306, 666 (2004). https://doi.org/10.1126/science.1102896.

    Article  CAS  Google Scholar 

  10. C. Lee, X.D. Wei, J.W. Kysar, and J. Hone, Science 321, 385 (2008). https://doi.org/10.1126/science.1157996.

    Article  CAS  Google Scholar 

  11. C. Soldano, A. Mahmood, and E. Dujardin, Carbon 48, 2127 (2010). https://doi.org/10.1016/j.carbon.2010.01.058.

    Article  CAS  Google Scholar 

  12. T.V. Varghese, H.A. Kumar, S. Anitha, S. Ratheesh, R.S. Rajeev, and V.L. Rao, Carbon 61, 476 (2013). https://doi.org/10.1016/j.carbon.2013.04.104.

    Article  CAS  Google Scholar 

  13. K.M.F. Shahil, and A.A. Balandin, Nano Lett. 12, 861 (2012). https://doi.org/10.1021/nl203906r.

    Article  CAS  Google Scholar 

  14. B. Tang, X.F. Li, W.Q. Huang, H.G. Yu, and X. Ling, Nanoscale Res. Lett. (2018). https://doi.org/10.1186/s11671-018-2704-1.

    Article  Google Scholar 

  15. B. Tang, G.X. Hu, H.Y. Gao, and L.Y. Hai, Int. J. Heat Mass Transf. 85, 420 (2015). https://doi.org/10.1016/j.ijheatmasstransfer.2015.01.141.

    Article  CAS  Google Scholar 

  16. J.S. Lewis, T. Perrier, Z. Barani, F. Kargar, and A.A. Balandin, Nanotechnology (2021). https://doi.org/10.1088/1361-6528/abc0c6.

    Article  Google Scholar 

  17. Z.P. Chen, W.C. Ren, L.B. Gao, B.L. Liu, S.F. Pei, and H.M. Cheng, Nat. Mater. 10, 424 (2011). https://doi.org/10.1038/Nmat3001.

    Article  CAS  Google Scholar 

  18. H.F. Huang, Y.M. Tang, L.Q. Xu, S.L. Tang, and Y.W. Du, Acs Appl. Mater. Int. 6, 10248 (2014). https://doi.org/10.1021/am501635h.

    Article  CAS  Google Scholar 

  19. J. Yang, E.W. Zhang, X.F. Li, Y.H. Yu, J. Qu, and Z.Z. Yu, Acs Appl. Mater. Int. 8, 2297 (2016). https://doi.org/10.1021/acsami.5b11337.

    Article  CAS  Google Scholar 

  20. J.W. Sha, Y.L. Li, R.V. Salvatierra et al., ACS Nano 11, 6860 (2017). https://doi.org/10.1021/acsnano.7b01987.

    Article  CAS  Google Scholar 

  21. C. Wu, X.Y. Huang, X.F. Wu, R. Qian, and P.K. Jiang, Adv. Mater. 25, 5658 (2013). https://doi.org/10.1002/adma.201302406.

    Article  CAS  Google Scholar 

  22. Z. Niu, Y. Zhang, Y. Zhang, X. Lu, and J. Liu, J. Alloys Compd. 820, 153114 (2020). https://doi.org/10.1016/j.jallcom.2019.153114.

    Article  CAS  Google Scholar 

  23. X.F. Zhang, K.K. Yeung, Z.L. Gao et al., Carbon 66, 201 (2014). https://doi.org/10.1016/j.carbon.2013.08.059.

    Article  CAS  Google Scholar 

  24. R.K. Singh, R. Kumar, and D.P. Singh, RSC Adv. 6, 64993 (2016).

    Article  CAS  Google Scholar 

  25. S.F. Pei, J.P. Zhao, J.H. Du, W.C. Ren, and H.M. Cheng, Carbon 48, 4466 (2010). https://doi.org/10.1016/j.carbon.2010.08.006.

    Article  CAS  Google Scholar 

  26. Y.H. Zhao, Y.F. Zhang, Z.K. Wu, and S.L. Bai, Compos. Part B-Eng. 84, 52 (2016). https://doi.org/10.1016/j.compositesb.2015.08.074.

    Article  CAS  Google Scholar 

  27. B. Han, H.Y. Chen, T. Hu, H.J. Ye, and L.X. Xu, J. Mol. Struct. (2020). https://doi.org/10.1016/j.molstruc.2019.127416.

    Article  Google Scholar 

  28. G. Compagnini, O. Puglisi, and G. Foti, Carbon 35, 1793 (1997). https://doi.org/10.1016/S0008-6223(97)00141-3.

    Article  CAS  Google Scholar 

  29. K.N. Kudin, B. Ozbas, H.C. Schniepp, R.K. Prud’homme, I.A. Aksay, and R. Car, Nano Lett. 8, 36 (2008). https://doi.org/10.1021/nl071822y.

    Article  CAS  Google Scholar 

  30. Y.H. Zhao, Z.K. Wu, and S.L. Bai, Compos. Part a-Appl. S 72, 200 (2015). https://doi.org/10.1016/j.compositesa.2015.02.011.

    Article  CAS  Google Scholar 

  31. M.M. Heyhat, S. Kimiagar, N.G.S.G. Abad, and E. Feyzi, Phys. Chem. Res. 4, 407 (2016). https://doi.org/10.22036/PCR.2016.14777.

    Article  CAS  Google Scholar 

  32. A. Yadav, R. Kumar, U.P. Pandey, and B. Sahoo, Carbon 173, 350 (2021). https://doi.org/10.1016/j.carbon.2020.11.029.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (11672171, 11802121, 51872182) and Natural Science Foundation of Jiangsu Province (BK20180416).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yong Zhang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Y., Yang, F., Yu, C. et al. Improved Thermal Properties of Three-Dimensional Graphene Network Filled Polymer Composites. J. Electron. Mater. 51, 420–425 (2022). https://doi.org/10.1007/s11664-021-09311-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-021-09311-x

Keywords

Navigation