Skip to main content
Log in

ALD-Assisted Graphene Functionalization for Advanced Applications

  • Review Article
  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

Graphene is a promising candidate for optical and electronic applications due to its outstanding electronic, optical and thermal properties. The combination of graphene with different materials, such as metals or metal oxides, realizes a smoother surface and lower contact resistance than single-layer graphene. Atomic layer deposition (ALD) is based on atomic level manipulation of gaseous phase reactants, which can be employed to fabricate high-performance graphene composites for advanced applications. However, ALD-assisted graphene functionalization faces numerous challenges, such as preferred growth on wrinkles, grain boundaries and defect sites due to the absence of abundant reactive sites on graphene surface. Herein, we summarize recent work on ALD-based graphene modification from the process and application viewpoints. In particular, mechanistic insights into the ALD process parameters and the influence of ALD conditions on film quality are discussed in detail. Moreover, a brief overview of several applications of ALD-assisted graphene-based electronic devices is presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Copyright 2016, ACS AMI Publishing.

Fig. 10

Copyright 2013, ACS AMI Publishing.

Similar content being viewed by others

References

  1. V. Palermo, I.A. Kinloch, S. Ligi, and N.M. Pugno, Nanoscale Mechanics of Graphene and Graphene Oxide in Composites: A Scientific and Technological Perspective Adv. Mater. 28, 6232–6238 (2016).

    Article  CAS  Google Scholar 

  2. Q. Li, Z. Ullah, W. Li, Y. Guo, J. Xu, R. Wang, Q. Zeng, M. Chen, C. Liu, and L. Liu, Wide-Range Strain Sensors Based on Highly Transparent and Supremely Stretchable Graphene/Ag-Nanowires Hybrid Structures Small 12, 5058–5065 (2016).

    Article  CAS  Google Scholar 

  3. Q. Han, B. Yan, T. Gao, J. Meng, Y. Zhang, Z. Liu, X. Wu, and D. Yu, Boron Nitride Film as a Buffer Layer in Deposition of Dielectrics on Graphene Small 10, 2293–2299 (2014).

    Article  CAS  Google Scholar 

  4. H. Zhang, B. Zhang, A. Chen, and Y. Qin, Controllable n-Fe2O3@graphene Nanomaterials by ALD Applied in an Aptasensor with Enhanced Electrochemical Performance for Thrombin Detection Dalton Trans 46, 7434–7440 (2017).

    Article  CAS  Google Scholar 

  5. Y. Zhu, X. Liu, K.W.K. Yeung, P.K. Chu, and S. Wu, Biofunctionalization of Carbon Nanotubes/Chitosan Hybrids on Ti Implants by Atom Layer Deposited ZnO Nanostructures Appl. Surf. Sci. 400, 14–23 (2017).

    Article  CAS  Google Scholar 

  6. W. Lu, L. Liang, X. Sun, X. Sun, C. Wu, L. Hou, J. Sun, and C. Yuan, Recent Progresses and Development of Advanced Atomic Layer Deposition towards High-Performance Li-Ion Batteries Nanomaterials 7, 325 (2017).

    Article  CAS  Google Scholar 

  7. A.K. Bishal, A. Butt, S.K. Selvaraj, B. Joshi, S.B. Patel, S. Huang, B. Yang, T. Shukohfar, C. Sukotjo, and C.G. Takoudis, Atomic Layer Deposition in Bio-Nanotechnology: A Brief Overview Crit. Rev. Biomed. Eng. 43, 255–276 (2015).

    Article  Google Scholar 

  8. H. Kim, H.-B.-R. Lee, and W.J. Maeng, Applications of Atomic Layer Deposition to Nanofabrication and Emerging Nanodevices Thin Solid Films 517, 2563–2580 (2009).

    Article  CAS  Google Scholar 

  9. R.L. Puurunen, Surface Chemistry of Atomic Layer Deposition: A Case Study for the Trimethylaluminum/Water Process J. Appl. Phys. 97, 121301 (2005).

    Article  CAS  Google Scholar 

  10. W. Kang, B.J. Choi, and J.H. Han, Growth Characteristics and Film Properties of Plasma-Enhanced and Thermal Atomic-Layer-Deposited Magnesium Oxide Thin Films Prepared Using Bis(ethylcyclopentadienyl)magnesium Precursor Ceram. Int. 46, 10115–10120 (2020).

    Article  CAS  Google Scholar 

  11. X. Wang, S.M. Tabakman, and H. Dai, Atomic Layer Deposition of Metal Oxides on Pristine and Functionalized Graphene J. Am. Chem. Soc. 130, 8152 (2008).

    Article  CAS  Google Scholar 

  12. B. Karasulu, R.H.J. Vervuurt, W.M.M. Kessels, and A.A. Bol, Continuous and Ultrathin Platinum Films on Graphene Using Atomic Layer Deposition: A Combined Computational and Experimental Study Nanoscale 8, 19829–19845 (2016).

    Article  CAS  Google Scholar 

  13. T.E.G. Alivio, L.R. De Jesus, R.V. Dennis, Y. Jia, C. Jaye, D.A. Fischer, U. Singisetti, and S. Banerjee, Atomic Layer Deposition of Hafnium(IV) Oxide on Graphene Oxide: Probing Interfacial Chemistry and Nucleation by using X-ray Absorption and Photoelectron Spectroscopies ChemPhysChem 16, 2842–2848 (2015).

    Article  CAS  Google Scholar 

  14. N. Yan, L. Qin, J. Li, F. Zhao, and H. Feng, Atomic Layer Deposition of Iron Oxide on Reduced Graphene Oxide and its Catalytic Activity in the Thermal Decomposition of Ammonium Perchlorate Appl. Surf. Sci. 451, 155–161 (2018).

    Article  CAS  Google Scholar 

  15. Q.-H. Wu, B. Qu, J. Tang, C. Wang, D. Wang, Y. Li, and J.-G. Ren, An Alumina-Coated Fe3O4-Reduced Graphene Oxide Composite Electrode as a Stable Anode for Lithium-ion Battery Electrochim. Acta 156, 147–153 (2015).

    Article  CAS  Google Scholar 

  16. F. Zhang, F. Shen, Z.-Y. Fan, X. Ji, B. Zhao, Z.-T. Sun, Y.-Y. Xuan, and X.-G. Han, Ultrathin Al2O3-Coated Reduced Graphene Oxide Membrane for Stable Lithium Metal Anode Rare Met. 37, 510–519 (2018).

    Article  CAS  Google Scholar 

  17. G. Zhou, B. Jin, Y. Wang, Q. Dong, A. Maity, J. Chang, R. Ren, H. Pu, X. Sui, S. Mao, and J. Chen, Ultrasensitive Sensors Based on Aluminum Oxide-Protected Reduced Graphene Oxide for Phosphate ion Detection in Real Water Mol. Syst. Des. Eng. 5, 936–942 (2020).

    Article  CAS  Google Scholar 

  18. C. Ban, M. Xie, X. Sun, J.J. Travis, G. Wang, H. Sun, A.C. Dillon, J. Lian, and S.M. George, Atomic Layer Deposition of Amorphous TiO2 on Graphene as an Anode for Li-ion Batteries Nanotechnology 24, 424002 (2013).

    Article  CAS  Google Scholar 

  19. G. Ran, Y. Xia, L. Liang, and C. Fu, Enhanced Response of Sensor on Serotonin Using Nickel-Reduced Graphene Oxide by Atomic Layer Deposition Bioelectrochemistry 140, 107820 (2021).

    Article  CAS  Google Scholar 

  20. F. Speck, M. Ostler, J. Roehrl, K. V. Emtsev, M. Hundhausen, L. Ley, and T. Seyller, “Atomic layer deposited aluminum oxide films on graphite and graphene studied by XPS and AFM,” in Physica Status Solidi C: Current Topics in Solid State Physics, Vol 7, No 2, vol. 7(Physica Status Solidi C-Current Topics in Solid State Physics, no. 2), 2010, pp. 398-401.

  21. V. Wheeler, N. Garces, L. Nyakiti, R. Myers-Ward, G. Jernigan, J. Culbertson, C. Eddy Jr., and D.K. Gaskill, Fluorine Functionalization of Epitaxial Graphene for Uniform Deposition of Thin High-kappa Dielectrics Carbon 50, 2307 (2012).

    Article  CAS  Google Scholar 

  22. M.J. Hollander, M. LaBella, Z.R. Hughes, M. Zhu, K.A. Trumbull, R. Cavalero, D.W. Snyder, X. Wang, E. Hwang, S. Datta, and J.A. Robinson, Enhanced Transport and Transistor Performance with Oxide Seeded High-kappa Gate Dielectrics on Wafer-Scale Epitaxial Graphene Nano Lett. 11, 3601 (2011).

    Article  CAS  Google Scholar 

  23. A. Nath, B.D. Kong, A.D. Koehler, V.R. Anderson, V.D. Wheeler, K.M. Daniels, A.K. Boyd, E.R. Cleveland, R.L. Myers-Ward, D.K. Gaskill, K.D. Hobart, F.J. Kub, and G.G. Jernigan, Universal Conformal Ultrathin Dielectrics on Epitaxial Graphene Enabled by a Graphene Oxide Seed Layer Appl. Phys. Lett. 110, 013106 (2017).

    Article  CAS  Google Scholar 

  24. K. Zou, X. Hong, D. Keefer, and J. Zhu, Deposition of High-Quality HfO2 on Graphene and the Effect of Remote Oxide Phonon Scattering Phys. Rev. Lett. 105, 126601 (2010).

    Article  CAS  Google Scholar 

  25. E. Schiliro, R. Lo Nigro, S. Panasci, F.M. Gelardi, S. Agnello, R. Yakimova, F. Roccaforte, and F. Giannazzo, Aluminum Oxide Nucleation in the Early Stages of Atomic Layer Deposition on Epitaxial Graphene Carbon 169, 172 (2020).

    Article  CAS  Google Scholar 

  26. Y.-Q. Cao, Z.-Y. Cao, X. Li, D. Wu, and A.-D. Li, A Facile Way to Deposit Conformal Al2O3 Thin Film on Pristine Graphene by Atomic Layer Deposition Appl. Surf. Sci. 291, 78 (2014).

    Article  CAS  Google Scholar 

  27. I.-K. Oh, J. Tanskanen, H. Jung, K. Kim, M.J. Lee, Z. Lee, S.-K. Lee, J.-H. Ahn, C.W. Lee, K. Kim, H. Kim, and H.-B.-R. Lee, Nucleation and Growth of the HfO2 Dielectric Layer for Graphene-Based Devices Chem. Mater. 27, 5868 (2015).

    Article  CAS  Google Scholar 

  28. T. Niu, M. Zhou, J. Zhang, Y. Feng, and W. Chen, Growth Intermediates for CVD Graphene on Cu(111): Carbon Clusters and Defective Graphene J. Am. Chem. Soc. 135, 8409 (2013).

    Article  CAS  Google Scholar 

  29. L. Colombo, X. Li, B. Han, C. Magnuson, W. Cai, Y. Zhu, and R. S. Ruoff, “Growth kinetics and defects of CVD graphene on Cu,” in Graphene, Ge/Iii-V, and Emerging Materials for Post-Cmos Applications 2, vol. 28, P. Srinivasan, Y. Obeng, D. Misra, Z. Karim, and S. DeGendt, Eds. (ECS Transactions, no. 5), 2010, pp. 109-114.

  30. D.V. Lam, S.-M. Kim, Y. Cho, J.-H. Kim, H.-J. Lee, J.-M. Yang, and S.-M. Lee, Healing Defective CVD-Graphene Through Vapor Phase Treatment Nanoscale 6, 5639 (2014).

    Article  CAS  Google Scholar 

  31. Z.A. Van Veldhoven, J.A. Alexander-Webber, A.A. Sagade, P. Braeuninger-Weimer, and S. Hofmann, Electronic Properties of CVD Graphene: The Role of Grain Boundaries, Atmospheric Doping, and Encapsulation by ALD Phys. Status Solidi B Basic Solid State Phys. 253, 2321–2325 (2016).

    Article  CAS  Google Scholar 

  32. B. Lee, G. Mordi, M.J. Kim, Y.J. Chabal, E.M. Vogel, R.M. Wallace, K.J. Cho, L. Colombo, and J. Kim, Characteristics of High-k Al2O3 Dielectric Using Ozone-Based Atomic Layer Deposition for Dual-Gated Graphene Devices Appl. Phys. Lett. 97, 043107 (2010).

    Article  CAS  Google Scholar 

  33. L. Zheng, X. Cheng, D. Cao, G. Wang, Z. Wang, D. Xu, C. Xia, L. Shen, Y. Yu, and D. Shen, Improvement of Al2O3 Films on Graphene Grown by Atomic Layer Deposition with Pre-H2O Treatment ACS Appl. Mater. Interfaces 6, 7014–7019 (2014).

    Article  CAS  Google Scholar 

  34. B. Dlubak, P.R. Kidambi, R.S. Weatherup, S. Hofmann, and J. Robertson, Substrate-Assisted Nucleation of Ultra-thin Dielectric Layers on Graphene by Atomic Layer Deposition Appl. Phys. Lett. 100, 173113 (2012).

    Article  Google Scholar 

  35. K. Kim, H.-B.-R. Lee, R.W. Johnson, J.T. Tanskanen, N. Liu, M.-G. Kim, C. Pang, C. Ahn, S.F. Bent, and Z. Bao, Selective Metal Deposition at Graphene Line Defects by Atomic Layer Deposition Nat. Commun. 5, 4781 (2014).

    Article  CAS  Google Scholar 

  36. I.-J. Park, T.I. Kim, T. Yoon, S. Kang, H. Cho, N.S. Cho, J.-I. Lee, T.-S. Kim, and S.-Y. Choi, Flexible and Transparent Graphene Electrode Architecture with Selective Defect Decoration for Organic Light-Emitting Diodes Adv. Funct. Mater. 28, 1704435 (2018).

    Article  CAS  Google Scholar 

  37. E. Schiliro, R. Lo Nigro, F. Roccaforte, I. Deretzis, A. La Magna, A. Armano, S. Agnello, B. Pecz, I.G. Ivanov, R. Yakimova, and F. Giannazzo, Seed-Layer-Free Atomic Layer Deposition of Highly Uniform Al2O3 Thin Films onto Monolayer Epitaxial Graphene on Silicon Carbide Adv. Mater. Interfaces 6, 1900097 (2019).

    Article  CAS  Google Scholar 

  38. W. Hong, G.W. Shim, S.Y. Yang, D.Y. Jung, and S.-Y. Choi, Improved Electrical Contact Properties of MoS2-Graphene Lateral Heterostructure Adv. Funct. Mater. 29, 1807550 (2019).

    Article  CAS  Google Scholar 

  39. K. Kim, H.-B.-R. Lee, R.W. Johnson, J.T. Tanskanen, N. Liu, M.-G. Kim, C. Pang, C. Ahn, S.F. Bent, and Z. Bao, Selective Metal Deposition at Graphene Line Defects by Atomic Layer Deposition Nat. Commun. 5, 5781 (2014).

    Article  CAS  Google Scholar 

  40. A. Gnisci, G. Faggio, L. Lancellotti, G. Messina, R. Carotenuto, E. Bobeico, P. Delli Veneri, A. Capasso, T. Dikonimos, and N. Lisi, The Role of Graphene-Based Derivative as Interfacial Layer in Graphene/n-Si Schottky Barrier Solar Cells Phys. Status Solidi A Appl. Mater. Sci. 216, 1800555 (2019).

    Article  CAS  Google Scholar 

  41. X. Li, X. Meng, J. Liu, D. Geng, Y. Zhang, M.N. Banis, Y. Li, J. Yang, R. Li, X. Sun, M. Cai, and M.W. Verbrugge, Tin Oxide with Controlled Morphology and Crystallinity by Atomic Layer Deposition onto Graphene Nanosheets for Enhanced Lithium Storage Adv. Funct. Mater. 22, 1647–1654 (2012).

    Article  CAS  Google Scholar 

  42. H.-B.-R. Lee, S.H. Baeck, T.F. Jaramillo, and S.F. Bent, Growth of Pt Nanowires by Atomic Layer Deposition on Highly Ordered Pyrolytic Graphite Nano Lett. 13, 457 (2013).

    Article  CAS  Google Scholar 

  43. S. Sun, G. Zhang, N. Gauquelin, N. Chen, J. Zhou, S. Yang, W. Chen, X. Meng, D. Geng, M.N. Banis, R. Li, S. Ye, S. Knights, G.A. Botton, T.-K. Sham, and X. Sun, Single-atom Catalysis Using Pt/Graphene Achieved through Atomic Layer Deposition Sci. Rep. 3, 1775 (2013).

    Article  CAS  Google Scholar 

  44. J. Kim, S. Kim, and W. Jung, Selective Atomic Layer Deposition onto Directly Transferred Monolayer Graphene Mater. Lett. 165, 45 (2016).

    Article  CAS  Google Scholar 

  45. W. Jung, D. Kim, M. Lee, S. Kim, J.-H. Kim, and C.-S. Han, Ultraconformal Contact Transfer of Monolayer Graphene on Metal to Various Substrates Adv. Mater. 26, 6394–6400 (2014).

    Article  CAS  Google Scholar 

  46. L.G.P. Martins, Y. Song, T. Zeng, M.S. Dresselhaus, J. Kong, and P.T. Araujo, Direct Transfer of Graphene onto Flexible Substrates Proc. Natl. Acad. Sci. USA 110, 17762–17767 (2013).

    Article  CAS  Google Scholar 

  47. D.-Y. Wang, I.S. Huang, P.-H. Ho, S.-S. Li, Y.-C. Yeh, D.-W. Wang, W.-L. Chen, Y.-Y. Lee, Y.-M. Chang, C.-C. Chen, C.-T. Liang, and C.-W. Chen, Clean-Lifting Transfer of Large-area Residual-Free Graphene Films Adv. Mater. 25, 4521 (2013).

    Article  CAS  Google Scholar 

  48. M. Mattinen, J. Hamalainen, M. Vehkamaki, M.J. Heikkila, K. Mizohata, P. Jalkanen, J. Raisanen, M. Ritala, and M. Leskela, Atomic Layer Deposition of Iridium Thin Films Using Sequential Oxygen and Hydrogen Pulses J. Phys. Chem. C 120, 15235 (2016).

    Article  CAS  Google Scholar 

  49. A.J.M. Mackus, N. Leick, L. Baker, and W.M.M. Kessels, Catalytic Combustion and Dehydrogenation Reactions during Atomic Layer Deposition of Platinum Chem. Mater. 24, 1752 (2012).

    Article  CAS  Google Scholar 

  50. T. Aaltonen, A. Rahtu, M. Ritala, and M. Leskela, Reaction Mechanism Studies on Atomic Layer Deposition of Ruthenium and Platinum Electrochem. Solid State Lett. 6, C130 (2003).

    Article  CAS  Google Scholar 

  51. S. Jandhyala, G. Mordi, B. Lee, G. Lee, C. Floresca, P.-R. Cha, J. Ahn, R.M. Wallace, Y.J. Chabal, M.J. Kim, L. Colombo, K. Cho, and J. Kim, Atomic Layer Deposition of Dielectrics on Graphene Using Reversibly Physisorbed Ozone ACS Nano 6, 2722–2730 (2012).

    Article  CAS  Google Scholar 

  52. H. Mu, Z. Zhang, X. Zhao, F. Liu, K. Wang, and H. Xie, High Sensitive Formaldehyde Graphene Gas Sensor Modified by Atomic Layer Deposition Zinc Oxide Films Appl. Phys. Lett. 105, 033107 (2014).

    Article  CAS  Google Scholar 

  53. J.H. Jeon, S.-K. Jerng, K. Akbar, and S.-H. Chun, Hydrophobic Surface Treatment and Interrupted Atomic Layer Deposition for Highly Resistive Al2O3 Films on Graphene ACS Appl. Mater. Interfaces 8, 29637–29641 (2016).

    Article  CAS  Google Scholar 

  54. N. Takahashi, and K. Nagashio, Buffer layer engineering on graphene via various oxidation methods for atomic layer deposition Appl. Phys. Express 9, 125101 (2016).

    Article  CAS  Google Scholar 

  55. Y. Stehle, H.M. Meyer III., R.R. Unocic, M. Kidder, G. Polizos, P.G. Datskos, R. Jackson, S.N. Smirnov, and I.V. Vlassiouk, Synthesis of Hexagonal Boron Nitride Mono layer: Control of Nucleation and Crystal Morphology Chem. Mater. 27, 8041–8047 (2015).

    Article  CAS  Google Scholar 

  56. M. Snure, S.R. Vangala, T. Prusnick, G. Grzybowski, A. Crespo, and K.D. Leedy, Two-Dimensional BN Buffer for Plasma Enhanced Atomic Layer Deposition of Al2O3 Gate Dielectrics on Graphene Field Effect Transistors Sci. Rep. 10, 5 (2020).

    Article  CAS  Google Scholar 

  57. S.A. Han, K.H. Lee, T.-H. Kim, W. Seung, S.K. Lee, S. Choi, B. Kumar, R. Bhatia, H.-J. Shin, W.-J. Lee, S. Kim, H.S. Kim, J.-Y. Choi, and S.-W. Kim, Hexagonal Boron Nitride Assisted Growth of Stoichiometric Al2O3 Dielectric on Graphene for Triboelectric NANOGENERATORS Nano Energy 12, 556–566 (2015).

    Article  CAS  Google Scholar 

  58. X. Xu, H. Wang, J. Wang, M. Muhammad, Z. Wang, P. Chen, W. Zhao, B. Kang, J. Zhang, C. Li, and Y. Duan, Surface Functionalization of a Graphene Cathode to Facilitate ALD Growth of an Electron Transport Layer and Realize High-Performance Flexible Perovskite Solar Cells ACS Appl. Energy Mater. 3, 4208–4216 (2020).

    Article  CAS  Google Scholar 

  59. A. Tselev, V.K. Sangwan, D. Jariwala, T.J. Marks, L.J. Lauhon, M.C. Hersam, and S.V. Kalinin, Near-Field Microwave Microscopy of High-kappa Oxides Grown on Graphene with an Organic Seeding Layer Appl. Phys. Lett. 103, 243105 (2013).

    Article  CAS  Google Scholar 

  60. J.M.P. Alaboson, Q.H. Wang, J.D. Emery, A.L. Lipson, M.J. Bedzyk, J.W. Elam, M.J. Pellin, and M.C. Hersam, Seeding Atomic Layer Deposition of High-k Dielectrics on Epitaxial Graphene with Organic Self-Assembled Monolayers ACS Nano 5, 5223–5232 (2011).

    Article  CAS  Google Scholar 

  61. V.K. Sangwan, D. Jariwala, S.A. Filippone, H.J. Karmel, J.E. Johns, J.M.P. Alaboson, T.J. Marks, L.J. Lauhon, and M.C. Hersam, Quantitatively Enhanced Reliability and Uniformity of High-kappa Dielectrics on Graphene Enabled by Self-Assembled Seeding Layers Nano Lett. 13, 1162–1167 (2013).

    Article  CAS  Google Scholar 

  62. J. Kitzmann, A. Goeritz, M. Fraschke, M. Lukosius, C. Wenger, A. Wolff, and G. Lupina, Perfluorodecyltrichlorosilane-Based Seed-Layer for Improved Chemical Vapour Deposition of Ultrathin Hafnium Dioxide Films on Graphene Sci. Rep. 6, 29223 (2016).

    Article  CAS  Google Scholar 

  63. I. Meric, C.R. Dean, A.F. Young, N. Baklitskaya, N.J. Tremblay, C. Nuckolls, P. Kim, and K.L. Shepard, Channel Length Scaling in Graphene Field-Effect Transistors Studied with Pulsed Current-Voltage Measurements Nano Lett. 11, 1093–1097 (2011).

    Article  CAS  Google Scholar 

  64. D.B. Farmer, H.-Y. Chiu, Y.-M. Lin, K.A. Jenkins, F. Xia, and P. Avouris, Utilization of a Buffered Dielectric to Achieve High Field-Effect Carrier Mobility in Graphene Transistors Nano Lett. 9, 4474–4478 (2009).

    Article  CAS  Google Scholar 

  65. W.C. Shin, J.H. Bong, S.-Y. Choi, and B.J. Cho, Functionalized Graphene as an Ultrathin Seed Layer for the Atomic Layer Deposition of Conformal High-k Dielectrics on Graphene ACS Appl. Mater. Interfaces. 5, 11515–11519 (2013).

    Article  CAS  Google Scholar 

  66. W.C. Shin, T.Y. Kim, O. Sul, and B.J. Cho, Seeding Atomic Layer Deposition of High-k Dielectric on Graphene with Ultrathin Poly(4-vinylphenol) Layer for Enhanced Device Performance and Reliability Appl. Phys. Lett. 101, 033507 (2012).

    Article  CAS  Google Scholar 

  67. S.-J. Jeong, Y. Gu, J. Heo, J. Yang, C.-S. Lee, M.-H. Lee, Y. Lee, H. Kim, S. Park, and S. Hwang, Thickness Scaling of Atomic-Layer-Deposited HfO2 Films and Their Application to Wafer-Scale Graphene Tunnelling Transistors Sci. Rep 6, 20907 (2016).

    Article  CAS  Google Scholar 

  68. A. Matsubayashi, J. Abel, D. PrasadSinha, J. UngLee, and V.P. LaBella, Characterization of Metal Oxide Layers Grown on CVD Graphene J. Vac. Sci. Technol. A Vac. Surf. Films 31, 2013 (2013).

    Article  CAS  Google Scholar 

  69. M. Batzill, The Surface Science of Graphene: Metal Interfaces, CVD Synthesis, Nanoribbons, Chemical Modifications, and Defects Surf. Sci. Rep. 67, 83–115 (2012).

    Article  CAS  Google Scholar 

  70. T. Shen, A.T. Neal, M.L. Bolen, J.J. Gu, L.W. Engel, M.A. Capano, and P.D. Ye, Quantum-Hall Plateau-Plateau Transition in Top-Gated Epitaxial Graphene Grown on SiC (0001) J. Appl. Phys. 111, 013716 (2012).

    Article  CAS  Google Scholar 

  71. T. Shen, J.J. Gu, M. Xu, Y.Q. Wu, M.L. Bolen, M.A. Capano, L.W. Engel, and P.D. Ye, Observation of Quantum-Hall Effect in Gated Epitaxial Graphene Grown on SiC (0001) Appl. Phys. Lett. 95, 172105 (2009).

    Article  CAS  Google Scholar 

  72. H. Yang, W. Chen, M.-Y. Li, F. Xiong, G. Wang, S. Zhang, C.-Y. Deng, G. Peng, and S.-Q. Qin, Ultrathin Al Oxide Seed Layer for Atomic Layer Deposition of High-kappa Al(2)O(3)Dielectrics on Graphene Chin. Phys. Lett. 37, 076801 (2020).

    Article  CAS  Google Scholar 

  73. R.H.J. Vervuurt, B. Karasulu, M.A. Verheijen, W.M.M. Kessels, and A.A. Bol, Uniform Atomic Layer Deposition of Al2O3 on Graphene by Reversible Hydrogen Plasma Functionalization Chem. Mater. 29, 2090–2100 (2017).

    Article  CAS  Google Scholar 

  74. J.W. Shin, M.H. Kang, S. Oh, B.C. Yang, K. Seong, H.-S. Ahn, T.H. Lee, and J. An, Atomic Layer Deposited High-k Dielectric on Graphene by Functionalization Through Atmospheric Plasma Treatment Nanotechnology 29, 195602 (2018).

    Article  CAS  Google Scholar 

  75. M.T. Humayun, M. Sainato, R. Divan, R.A. Rosenberg, A. Sahagun, L. Gundel, P.A. Solomon, and I. Paprotny, Effects of O-2 plasma and UV-O-3 assisted surface activation on high sensitivity metal oxide functionalized multiwalled carbon nanotube CH4 sensors J. Vac. Sci. Technol., A 35, 061402 (2017).

    Article  CAS  Google Scholar 

  76. A. Tselev, V.K. Sangwan, D. Jariwala, T.J. Marks, L.J. Lauhon, M.C. Hersam, and S.V. Kalinin, Near-Field Microwave Microscopy of High-κ Oxides Grown on Graphene with an Organic Seeding Layer Appl. Phys. Lett. 103, 243105 (2013).

    Article  CAS  Google Scholar 

  77. Y. Zhang, C. Guerra-Nunez, I. Utke, J. Michler, P. Agrawal, M.D. Rossell, and R. Erni, Atomic Layer Deposition of Titanium Oxide on Single-Layer Graphene: An Atomic-Scale Study toward Understanding Nucleation and Growth Chem. Mater. 29, 2232–2238 (2017).

    Article  CAS  Google Scholar 

  78. X. Sun, M. Xie, G. Wang, H. Sun, A.S. Cavanagh, J.J. Travis, S.M. George, and J. Lian, Atomic Layer Deposition of TiO2 on Graphene for Supercapacitors J. Electrochem. Soc. 159, A364–A369 (2012).

    Article  CAS  Google Scholar 

  79. X. Meng, D. Geng, J. Liu, R. Li, and X. Sun, Controllable synthesis of graphene-based titanium dioxide nanocomposites by atomic layer deposition Nanotechnology 22, 165602 (2011).

    Article  Google Scholar 

  80. N. Justh, B. Berke, K. László, L.P. Bakos, A. Szabó, K. Hernádi, and I.M. Szilágyi, Preparation of Graphene Oxide/Semiconductor Oxide Composites by using Atomic Layer Deposition Appl. Surf. Sci. 453, 245–251 (2018).

    Article  CAS  Google Scholar 

  81. Y. Zhang, Z. Qiu, X. Cheng, H. Xie, H. Wang, X. Xie, Y. Yu, and R. Liu, Direct Growth of High-Quality Al2O3 Dielectric on Graphene Layers by Low-Temperature H2O-Based ALD J. Phys. D Appl. Phys. 47, 055106 (2014).

    Article  CAS  Google Scholar 

  82. Y.H. Park, and S.W. Lee, Influences of Graphene Surface Treatment Temperature on a Growth of Al2O3 Film by Atomic Layer Deposition on Graphene Bull. Korean Chem. Soc. 38, 1038–1041 (2017).

    Article  CAS  Google Scholar 

  83. S.E. Potts, and W.M.M. Kessels, Energy-Enhanced Atomic Layer Deposition for More Process and Precursor Versatility Coord. Chem. Rev. 257, 3254–3270 (2013).

    Article  CAS  Google Scholar 

  84. A. Sinha, D.W. Hess, and C.L. Henderson, Area Selective Atomic Layer, Deposition of Titanium Dioxide: Effect of Precursor Chemistry J. Vac. Sci. Technol., B 24, 2523–2532 (2006).

    Article  CAS  Google Scholar 

  85. D.M. King, X. Liang, P. Li, and A.W. Weimer, Low-Temperature Atomic Layer Deposition of ZnO Films on Particles in a Fluidized Bed Reactor Thin Solid Films 516, 8517–8523 (2008).

    Article  CAS  Google Scholar 

  86. J.R. Kim, H. Lim, S. Park, Y.J. Choi, S. Suh, B.S. Yang, J. Heo, and H.J. Kim, Effects of Tris(tert-pentoxy)silanol Purge Time on SiO2 Thin-Film Growth Rate in Rapid Atomic Layer Deposition ECS Solid State Lett. 2, P91–P93 (2013).

    Article  CAS  Google Scholar 

  87. L. Zheng, X. Cheng, D. Cao, Z. Wang, D. Xu, C. Xia, L. Shen, and Y. Yu, Effects of Rapid Thermal Annealing on Properties of HfAlO Films Directly Deposited by ALD on Graphene Mater. Lett. 137, 200–202 (2014).

    Article  CAS  Google Scholar 

  88. S.B. Kim, Y.H. Ahn, J.-Y. Park, and S.W. Lee, Enhanced Nucleation and Growth of HfO2 Thin Films grown By Atomic Layer Deposition on Graphene J. Alloy. Compd. 742, 676–682 (2018).

    Article  CAS  Google Scholar 

  89. S.-Y. Kim, J. Hwang, Y.J. Kim, H.J. Hwang, M. Son, N. Revannath, M.-H. Ham, K. Cho, and B.H. Lee, Threshold Voltage Modulation of a Graphene-ZnO Barristor Using a Polymer Doping Process Adv.ed Electron. Mater. 5, 1800805 (2019).

    Article  CAS  Google Scholar 

  90. X. Sun, M. Xie, G. Wang, H. Sun, A.S. Cavanagh, J.J. Travis, S.M. George, and J. Lian, Atomic Layer Deposition of TiO2on Graphene for Supercapacitors J. Electrochem. Soc. 159, A364–A369 (2012).

    Article  CAS  Google Scholar 

  91. B. Fallahazad, K. Lee, G. Lian, S. Kim, C.M. Corbet, D.A. Ferrer, L. Colombo, and E. Tutuc, Scaling of Al2O3 Dielectric for Graphene Field-Effect Transistors Appl. Phys. Lett. 100, 093112 (2012).

    Article  CAS  Google Scholar 

  92. E. Schiliro, R. Lo Nigro, F. Roccaforte, and F. Giannazzo, Recent Advances in Seeded and Seed-Layer-Free Atomic Layer Deposition of High-K Dielectrics on Graphene for Electronics J. Carbon Res. 5, 53 (2019).

    Article  CAS  Google Scholar 

  93. A.J. Pollard, E.W. Perkins, N.A. Smith, A. Saywell, G. Goretzki, A.G. Phillips, S.P. Argent, H. Sachdev, F. Mueller, S. Huefner, S. Gsell, M. Fischer, M. Schreck, J. Osterwalder, T. Greber, S. Berner, N.R. Champness, and P.H. Beton, Supramolecular Assemblies Formed on an Epitaxial Graphene Superstructure Angew. Chem. Int. Ed. 49, 1794–1799 (2010).

    Article  CAS  Google Scholar 

  94. H.G. Zhang, J.T. Sun, T. Low, L.Z. Zhang, Y. Pan, Q. Liu, J.H. Mao, H.T. Zhou, H.M. Guo, S.X. Du, F. Guinea, and H.J. Gao, Assembly of Iron Phthalocyanine and pentacene molecules on a graphene monolayer grown on Ru(0001) Phys. Rev. B 84, 245436 (2011).

    Article  CAS  Google Scholar 

  95. T.-H. Han, Y. Lee, M.-R. Choi, S.-H. Woo, S.-H. Bae, B.H. Hong, J.-H. Ahn, and T.-W. Lee, Extremely Efficient Flexible Organic Light-Emitting Diodes with Modified Graphene Anode Nat. Photonics 6, 105–110 (2012).

    Article  CAS  Google Scholar 

  96. T. Nam, Y.J. Park, H. Lee, I.-K. Oh, J.-H. Ahn, S.M. Cho, H. Kim, and H.-B.-R. Lee, A Composite Layer of Atomic-Layer-Deposited Al2O3 and Graphene for Flexible Moisture Barrier Carbon 116, 553–561 (2017).

    Article  CAS  Google Scholar 

  97. N. Petrone, T. Cheri, I. Meric, L. Wang, K.L. Shepard, and J. Hone, Flexible Graphene Field-Effect Transistors Encapsulated in Hexagonal Boron Nitride ACS Nano 9, 8953–8959 (2015).

    Article  CAS  Google Scholar 

  98. J. Wang, G. Jin, Q. Zhen, C. He, and Y. Duan, Bulk Passivation and Interfacial Passivation for Perovskite Solar Cells: Which One is More Effective? Adv. Mater. Interfaces 8, 2002078 (2021).

    Article  CAS  Google Scholar 

  99. K.S. Park, S. Kim, H. Kim, D. Kwon, Y.E. Lee, S.W. Min, S. Im, H.J. Choi, S. Lim, H. Shin, S.M. Koo, and M.M. Sung, Wafer-Scale Single-Domain-Like Graphene by Defect-Selective Atomic Layer Deposition of Hexagonal ZnO Nanoscale 7, 17702–17709 (2015).

    Article  CAS  Google Scholar 

  100. M. Chen, X. Liu, M. Qi, J. Xiang, J. Yin, Q. Chen, and X. Xia, Tailored Integrated Electrodes of Graphene Foam Supported FeS2 as Cathode for Enhanced Li Ion Storage Performance Mater. Technol. 32, 888–892 (2017).

    Article  CAS  Google Scholar 

  101. S.K. Cheah, E. Perre, M. Rooth, M. Fondell, A. Harsta, L. Nyholm, M. Boman, T. Gustafsson, J. Lu, P. Simon, and K. Edstrom, Self-Supported Three-Dimensional Nanoelectrodes for Microbattery Applications Nano Lett. 9, 3230–3233 (2009).

    Article  CAS  Google Scholar 

  102. M. Yu, A. Wang, Y. Wang, C. Li, and G. Shi, An Alumina Stabilized ZnO-Graphene Anode for Lithium Ion Batteries via Atomic Layer Deposition Nanoscale 6, 11419–11424 (2014).

    Article  CAS  Google Scholar 

  103. M. Xie, X. Sun, S.M. George, C. Zhou, J. Lian, and Y. Zhou, Amorphous Ultrathin SnO2 Films by Atomic Layer Deposition on Graphene Network as Highly Stable Anodes for Lithium-Ion Batteries ACS Appl. Mater. Interfaces 7, 27735–27742 (2015).

    Article  CAS  Google Scholar 

  104. H. Jung, J. Park, I.K. Oh, T. Choi, S. Lee, J. Hong, T. Lee, S.H. Kim, and H. Kim, Fabrication of Transferable Al(2)O(3) Nanosheet by Atomic Layer Deposition for Graphene FET ACS Appl. Mater. Interfaces 6, 2764–2769 (2014).

    Article  CAS  Google Scholar 

  105. M. Xiao, C. Qiu, Z. Zhang, and L.M. Peng, Atomic-Layer-Deposition Growth of an Ultrathin HfO2 Film on Graphene ACS Appl. Mater. Interfaces 9, 34050–34056 (2017).

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported by the National Natural Science Foundation of China (Grant Nos. 61974054 and 61675088), the International Science & Technology Cooperation Program of Jilin (Grant No. 20190701023GH), the Scientific and Technological Developing Scheme of Jilin Province (Grant No. 20200401045GX), and the Project of Science and Technology Development Plan of Jilin Province (Grant No. 20190302011G).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ping He, Ye Li or Yu Duan.

Ethics declarations

Conflict of interest

The authors have no conflicts of interest to declare.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, Y., Wang, J., He, P. et al. ALD-Assisted Graphene Functionalization for Advanced Applications. J. Electron. Mater. 51, 2766–2785 (2022). https://doi.org/10.1007/s11664-021-09266-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-021-09266-z

Keywords

Navigation