Skip to main content
Log in

Synthesis and Performance Study of Pd/CeO2 Composite Catalyst for Enhanced MOR Activity

  • Original Research Article
  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

The present study investigates the interplay between structural composition and electrochemical characteristics of carbon-supported palladium-cerium oxide (Pd-CeO2) composites. The catalysts were synthesized using the polyol method and their potential for methanol oxidation reaction (MOR) was examined. The characterization of the prepared composites are performed using X-ray diffraction and transmission electron microscopy. The results confirm the crystal structure and that there was uniform dispersion of Pd nanoparticles on the carbon support. The methanol oxidation activity was strongly affected by cerium in the Pd catalyst which is observed by cyclic voltammetry. The most active PCC3 composite (Pd/C with 30 wt.% CeO2) with significantly low Pd content showed remarkably higher activities than the commercial Pt/C catalyst. The Pd nanoparticles occupied the surface of CeO2, thus enhancing the Pd/CeO2 interface. The higher concentration of oxygen vacancies at the CeO2 surface developed strong interactions at Pd/CeO2 interface which improved the MOR effectively. The maximum current density of 1740 mA cm−2 at the voltage of 0.27 V was obtained with PCC3 (30 wt.%). These results showed that the CeO2 based Pd/C catalyst is an attractive candidate for anode material in a direct methanol fuel cell.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. X. Zhou, and C. Feng, J. Clean. Prod. 142, 3174 (2017).

    Article  Google Scholar 

  2. M. Asadzadeh, F. Tajabadi, D. Dastan, P. Sangpour, Z. Shi, and N. Taghavinia, Ceram. Int. 47, 5487 (2021).

    Article  CAS  Google Scholar 

  3. N. Haghnegahdar, M. Abbasi Tarighat, and D. Dastan, J Mater Sci: Mater Electron 32, 5602 (2021).

    CAS  Google Scholar 

  4. F. Altaf, R. Batool, R. Gill, Z. Rehman, H. Majeed, A. Ahmad, M. Shafiq, D. Dastan, G. Abbas, and K. Jacob, Renew. Energy 164, 709 (2021).

    Article  CAS  Google Scholar 

  5. M. Fathinezhad, M. AbbasiTarighat, and D. Dastan, Environ. Nanotechnol. Monit. Manag. 14, 100307 (2020).

    Google Scholar 

  6. J. Kim, A. Jun, O. Gwon, S. Yoo, M. Liu, J. Shin, T.-H. Lim, and G. Kim, Nano Energy 44, 121 (2018).

    Article  CAS  Google Scholar 

  7. L. Sun, Z. Shi, B. He, H. Wang, S. Liu, M. Huang, J. Shi, D. Dastan, H. Wang (2021) Adv. Funct. Mater. 2100280.

  8. S. Sun, Z. Shi, L. Sun, L. Liang, D. Dastan, B. He, H. Wang, M. Huang, and R. Fan, ACS Appl. Mater. Interfaces 13, 27522 (2021).

    Article  CAS  Google Scholar 

  9. X. Yin, S. Wu, D. Dastan, S. Nie, Y. Liu, Z. Li, Y. Zhou, J. Li, A. Faik, K. Shan, Z. Shi, M. AbbasiTarighat, and X. Ma, Surf. Interfaces. 25, 101190 (2021).

    Article  CAS  Google Scholar 

  10. P. Yin, Z. Shi, L. Sun, P. Xie, D. Dastan, K. Sun, and R. Fan, Polym. Compos 42, 3000 (2021).

    Article  CAS  Google Scholar 

  11. S. Nie, D. Dastan, J. Li, W. Zhou, S. Wu, Y. Zhou, and X. Yin, J. Phys. Chem. Solids 150, 109864 (2021).

    Article  CAS  Google Scholar 

  12. K. Shan, Z. Yi, X. Yin, D. Dastan, F. Altaf, H. Garmestani, and F. Alamgir, Surf. Interfaces 21, 100762 (2020).

    Article  CAS  Google Scholar 

  13. K. Shan, F. Zhai, Z. Yi, X. Yin, D. Dastan, F. Tajabadi, A. Jafari, and S. Abbasi, Surf. Interfaces 23, 100905 (2021).

    Article  CAS  Google Scholar 

  14. G. Tan, D. Tang, D. Dastan, A. Jafari, Z. Shi, Q. Chu, J. Silva, and X. Yin, Ceram. Int. 47, 17153 (2021).

    Article  CAS  Google Scholar 

  15. K. Shan, Z. Yi, X. Yin, D. Dastan, S. Dadkhah, B. Coates, and H. Garmestani, Adv. Powder Technol. 31, 4657 (2020).

    Article  CAS  Google Scholar 

  16. W. Zhou, D. Dastan, X. Yin, S. Nie, S. Wu, Q. Wang, and J. Li, J Mater Sci: Mater Electron 31, 18412 (2020).

    Google Scholar 

  17. M. Uzunoglu, and M.S. Alam, Fuel-Cell Systems for Transportations, Power Electronics Handbook, 4th ed. (Amsterdam: Elsevier, 2018), pp. 1091–1112.

    Chapter  Google Scholar 

  18. A. Serov, I.V. Zenyuk, C.G. Arges, and M.J. Chatenet, Power Source 375, 149 (2018).

    Article  CAS  Google Scholar 

  19. M. Ehsani, Y. Gao, and A. Emadi, Modern electric, hybrid electric, and fuel cell vehicles: fundamentals, theory, and design (Boca Raton: CRC Press, 2017).

    Book  Google Scholar 

  20. M. Hosseini, N. Rashidi, R. Mahmoodi, and M. Omer, Mater Chem. Phy. 208, 207 (2018).

    Article  CAS  Google Scholar 

  21. V. Vijayalekshmi, and D. Khastgir, Cellulose 25, 661 (2018).

    Article  CAS  Google Scholar 

  22. J. Li, G. Xu, X. Luo, J. Xiong, Z. Liu, and W. Cai, Appl. Energy 213, 408 (2018).

    Article  CAS  Google Scholar 

  23. L. Tao, J. Huang, D. Dastan, T. Wang, J. Li, X. Yin, and Q. Wang, Appl. Surf. Sci. 530, 147265 (2020).

    Article  CAS  Google Scholar 

  24. D. Reddy., and B. Krishnamurthy (2018) J. Solid State Electr. 1-14 (2018).

  25. L. Tao, J. Huang, D. Dastan, T. Wang, J. Li, X. Yin, and Q. Wang, Appl Surf. Sci 540, 148320 (2021).

    Article  CAS  Google Scholar 

  26. L. Sun, Zh. Shi, H. Wang, K. Zhang, D. Dastan, K. Sun, and R. Fan, J. Mater. Chem. A 8, 5750–5757 (2020).

    Article  CAS  Google Scholar 

  27. W. Zhang, X. Zhu, L. Liang, P. Yin, P. Xie, D. Dastan, K. Sun, R. Fan, and Z. Shi, J Mater Sci 56, 4254–4265 (2021).

    Article  CAS  Google Scholar 

  28. L. Sun, L. Liang, Z. Shi, H. Wang, P. Xie, D. Dastan, K. Sun, and R. Fan, Eng. Sci. 12, 95–105 (2020).

    CAS  Google Scholar 

  29. J. Yang, X. Zhu, H. Wang, X. Wang, Ch. Hao, R. Fan, D. Dastan, and Z. Shi, Compos Part A 131, 105814 (2020).

    Article  CAS  Google Scholar 

  30. X. Zhu, J. Yang, D. Dastan, H. Garmestani, R. Fan, and Zh. Shi, Compos Part A 125, 105521 (2019).

    Article  CAS  Google Scholar 

  31. L. Sun, Z. Shi, L. Liang, S. Wei, H. Wang, D. Dastan, K. Sun, and R. Fan, J. Mater. Chem. C 8, 10257–10265 (2020).

    Article  CAS  Google Scholar 

  32. A.U. Devi, K. Divya, M.S.A. Saraswathi, D. Rana., and A. Nagendran, Mater. Chem. Phys. (2018).

  33. R. Chen and J. Guo, Advancements in Ethanol Oxidation Reaction Mechanisms with Alkaline Direct Ethanol Fuel Cells, in: Meeting Abstracts, The Electrochemical Society (2018) pp. 2222–2222.

  34. A. Mehmood, M.A. Scibioh, J. Prabhuram, M.-G. An, and H.Y. Ha, J. Power Sources 297, 224–241 (2015).

    Article  CAS  Google Scholar 

  35. K. Dutta, S. Das, D. Rana, and P.P. Kundu, Polymer Rev. 55, 1–56 (2015).

    Article  CAS  Google Scholar 

  36. L. Liu, H. Lou, and M. Chen, Appl. Catal A Gen. 550, 1–10 (2018).

    Article  CAS  Google Scholar 

  37. N. Kakati, J. Maiti, S.H. Lee, S.H. Jee, B. Viswanathan, and Y.S. Yoon, Chem. Rev. 114, 12397–12429 (2014).

    Article  CAS  Google Scholar 

  38. S. Ratso, I. Kruusenberg, M. Käärik, M. Kook, R. Saar, P. Kanninen, T. Kallio, J. Leis, and K. Tammeveski, Appl. Catalysis. B Environ. 219, 276–286 (2017).

    Article  CAS  Google Scholar 

  39. P. Valk, J. Nerut, R. Kanarbik, I. Tallo, J. Aruväli, and E. Lust, J. Electrochem. Soc. 165, F315–F323 (2018).

    Article  CAS  Google Scholar 

  40. Y.-J. Wang, B. Fang, H. Li, X.T. Bi, and H. Wang, Prog. Mater. Sci. 82, 445–498 (2016).

    Article  CAS  Google Scholar 

  41. H. Jin, J. Wang, D. Su, Z. Wei, Z. Pang, and Y. Wang, J. Am. Xhem. Soc. 137, 2688–2694 (2015).

    Article  CAS  Google Scholar 

  42. Y. Ji, Y. Il Cho, Y. Jeon, C. Lee, D.-H. Park, and Y.-G. Shul, Appl. Catal. B Environ 204, 421–429 (2017).

    Article  CAS  Google Scholar 

  43. J. Parrondo, T. Han, E. Niangar, C. Wang, N. Dale, K. Adjemian., and V. Ramani (2014) Proceedings of the National Academy of Sciences, 111: 45-50.

  44. R. Baronia, J. Goel, S. Tiwari, P. Singh, D. Singh, S.P. Singh, and S. Singhal, Int. J. Hydrogen Energ 42, 10238–10247 (2017).

    Article  CAS  Google Scholar 

  45. S. Das, K. Dutta, and P.P. Kundu, J. Mater. Chem. A 3, 11349–11357 (2015).

    Article  CAS  Google Scholar 

  46. F.-S. Zheng, S.-H. Liu, and C.-W. Kuo, Int. J. Hydrogen Energ. 41, 2487–2497 (2016).

    Article  CAS  Google Scholar 

  47. M. Chen, B. Lou, Z. Ni, and B. Xu, Electrochim. Acta 165, 105–109 (2015).

    Article  CAS  Google Scholar 

  48. N. Abdullah, S. Kamarudin, L. Shyuan, and N. Karim, Nanoscale Res. Lett 12, 613 (2017).

    Article  CAS  Google Scholar 

  49. B. Choi, W.-H. Nam, D.Y. Chung, I.-S. Park, S.J. Yoo, J.C. Song, and Y.-E. Sung, Electrochim Acta 164, 235–242 (2015).

    Article  CAS  Google Scholar 

  50. A. Kawasaki, S. Itoh, K. Shima, K. Kato, H. Ohashi, T. Ishikawa, and T. Yamazaki, Phy. Chem. Chem. Phys. 17, 24783–24790 (2015).

    Article  CAS  Google Scholar 

  51. Y.-J. Wang, N. Zhao, B. Fang, H. Li, X.T. Bi, and H. Wang, Chem. Rev. 115, 3433–3467 (2015).

    Article  CAS  Google Scholar 

  52. E. Antolini, Energy Environ. Sci. 2, 915–931 (2009).

    Article  CAS  Google Scholar 

  53. T. Hu, Y. Wang, Q. Liu, L. Zhang, H. Wang, T. Tang, W. Chen, M. Zhao, and J. Jia, Int. J. Hydrogen Energ. 42, 25951–25959 (2017).

    Article  CAS  Google Scholar 

  54. S.-M. Kim, A.R. Cho, and S.-Y. Lee, J. Nanopart. Res. 17, 284 (2015).

    Article  Google Scholar 

  55. E.A. Zeid, and Y.T. Kim, JNOAAR 3, 31–40 (2015).

    Google Scholar 

  56. J.A. Nogueira, Instabilidades cinéticas em células a combustível-oscilações de potencial em PEMFC com ânodo de Pd-Pt/C ou Pd/C e em DMFC,(Doctoral Dissertation, Universidade de São Paulo), (2015).

  57. Z. Wang, L. Shi, G. Gou, A. Fan, C. Xu, L. Zhang, and (ICAMEST, , April 25–26, 2015 Qingdao, China, CRC Press, Boca Raton 2016, 167 (2015).

    Google Scholar 

  58. T.-Y. Chen, P.-C. Huang, Y.-F. Liao, Y.-T. Liu, T.-K. Yeh, and T.-L. Lin, RSC Adv. 6, 72607–72615 (2016).

    Article  CAS  Google Scholar 

  59. Y. Sun, Y. Zhou, C. Zhu, L. Hu, M. Han, A. Wang, H. Huang, Y. Liu, and Z. Kang, Nanoscale 9, 5467–5474 (2017).

    Article  CAS  Google Scholar 

  60. Y. Huang, H. Huang, Q. Gao, C. Gan, Y. Liu, and Y. Fang, Electrochim. Acta. 149, 34–41 (2014).

    Article  CAS  Google Scholar 

  61. Y. Hu, A. Zhu, C. Zhang, Q. Zhang, and Q. Liu, Int. J. Hydrogen Energ. 40, 15652–15662 (2015).

    Article  CAS  Google Scholar 

  62. W. Liu, X. Qin, X. Zhang, Z. Shao, and B. Yi, J Appl. Electr. 46, 887–893 (2016).

    Article  CAS  Google Scholar 

  63. G. Song, H. Yang, Y. Sun, J. Wang, W. Qu, Q. Zhang, L. Ma, and Y. Feng, Chinese J. Catal. 38, 554–562 (2017).

    Article  CAS  Google Scholar 

  64. T. Montini, M. Melchionna, M. Monai, and P. Fornasiero, Chem. Rev. 116, 5987–6041 (2016).

    Article  CAS  Google Scholar 

  65. J. Ke, W. Zhu, Y. Jiang, R. Si, Y.-J. Wang, S.-C. Li, C. Jin, H. Liu, W.-G. Song, and C.-H. Yan, ACS Catal. 5, 5164–5173 (2015).

    Article  CAS  Google Scholar 

  66. K. Wu, L. Zhou, C.-J. Jia, L.-D. Sun, and C.-H. Yan, Mater. Chem. Front. 1, 1754–1763 (2017).

    Article  CAS  Google Scholar 

  67. C. Xu, and P.K. Shen, J Power Sources 142, 27–29 (2005).

    Article  CAS  Google Scholar 

  68. C. Xu, R. Zeng, P.K. Shen, and Z. Wei, Electrochim. Acta 51, 1031–1035 (2005).

    Article  CAS  Google Scholar 

  69. C. Jin, Y. Song, and Z. Chen, Electrochim. Acta. 54, 4136–4140 (2009).

    Article  CAS  Google Scholar 

  70. M.F.A. Aboud, Z.A. Alothman, M.A. Habila, C. Zlotea, M. Latroche, and F. Cuevas, Energies 8, 3578–3590 (2015).

    Article  Google Scholar 

  71. P.G. Collins, K. Bradley, M. Ishigami, and D.A. Zettl, Science 287, 1801–1804 (2000).

    Article  CAS  Google Scholar 

  72. H. Liang, J.M. Raitano, G. He, A.J. Akey, I.P. Herman, L. Zhang, and S.-W. Chan, J. Mater. Sci. 47, 299–307 (2012).

    Article  CAS  Google Scholar 

  73. A. Parinyaswan, S. Pongstabodee, and A. Luengnaruemitchai, Int. J. Hydrogen Energ. 31, 1942–1949 (2006).

    Article  CAS  Google Scholar 

  74. C. Tu, and S. Cheng, ACS Sustain. Chem. Eng. 2, 629–636 (2014).

    Article  CAS  Google Scholar 

  75. Y. Ma, Q. Ge, W. Li, and H. Xu, Appl. Catal. B Environ. 90, 99–104 (2009).

    Article  CAS  Google Scholar 

  76. O. Muneeb, J. Estrada, L. Tran, K. Nguyen, J. Flores, S. Hu, A.M. Fry-Petit, L. Scudiero, S. Ha, and J.L. Haan, Electrochim. Acta. 218, 133–139 (2016).

    Article  CAS  Google Scholar 

  77. Y. Katayama, T. Okanishi, H. Muroyama, T. Matsui, and K. Eguchi, ACS Catal. 6, 2026–2034 (2016).

    Article  CAS  Google Scholar 

  78. S.C. Thomas, X. Ren, S. Gottesfeld, and P. Zelenay, Electrochim. Acta. 47, 3741–3748 (2002).

    Article  CAS  Google Scholar 

  79. M.S. Masdar, A.M. Zainoodin, M.I. Rosli, S.K. Kamarudin, and W.R.W. Daud, Int. J. Hydrogen Energ. 42, 9230–9242 (2017).

    Article  CAS  Google Scholar 

  80. R.A.M. Esfahani, H.M. Fruehwald, F. Afsahi, and E.B. Easton, Appl. Catal. B 232, 314–321 (2018).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Faizah Altaf, Zohaib Ur Rehman or Karl Jacob.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Altaf, F., Batool, R., Rehman, Z.U. et al. Synthesis and Performance Study of Pd/CeO2 Composite Catalyst for Enhanced MOR Activity. J. Electron. Mater. 50, 7222–7229 (2021). https://doi.org/10.1007/s11664-021-09165-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-021-09165-3

Keywords

Navigation