Skip to main content
Log in

High-Temperature Formaldehyde-Sensing of WO3 Nanostructure Prepared by the SILAR Method: DFT Investigation of Gas Adsorption Properties

  • Original Research Article
  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

Tungsten oxide (WO3) was deposited through the successive ionic layer adsorption reaction (SILAR) method at low temperature. The polycrystalline monoclinic structure of deposited WO3 is confirmed by its x-ray diffraction (XRD) pattern. Sensing studies revealed that the nanostructured WO3 has a good response towards formaldehyde (HCHO) at 350°C. A response time of 28 s was observed for 5 ppm HCHO. Density functional theory (DFT) studies were performed to understand the detection mechanism based on the lattice plane growth orientation. The electronic properties of the WO3 were analyzed using the density of states (DOS) and Mulliken population analysis for adsorption of oxygen and HCHO on the WO3 surface. A significant change in the Fermi energy was observed during oxygen and HCHO adsorption on the surface of WO3. The computational results were compared with the proposed HCHO detection mechanism. The results obtained through the present work highlight the possibilities of developing a sensor to detect HCHO concentrations at the ppm level.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4.
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9.
Fig. 10

Similar content being viewed by others

References

  1. M. Kumar, V. Bhatt, A.C. Abhyankar, J. Kim, A. Kumar, S.H. Patil, and J.H. Yun, Sci. Rep. 8, 1 (2018).

    Google Scholar 

  2. T. Tharsika, M. Thanihaichelvan, A.S.M.A. Haseeb, and S.A. Akbar, Front. Mater. 6, 1 (2019).

    Article  Google Scholar 

  3. M. Poloju, N. Jayababu, and M.V.R. Reddy, Mater. Sci. Eng. B 227, 61 (2018).

    Article  CAS  Google Scholar 

  4. J. Zhang, D. Leng, L. Zhang, G. Li, F. Ma, J. Gao, H. Lu, and B. Zhu, J. Alloys Compd. 853, 157339 (2021).

    Article  CAS  Google Scholar 

  5. D. Xue, P. Wang, Z. Zhang, and Y. Wang, Sensors Actuators B Chem. 296, 126710 (2019).

    Article  CAS  Google Scholar 

  6. S.B. Upadhyay, and P.P. Sahay, NANO 10, 1550113 (2015).

    Article  CAS  Google Scholar 

  7. R. Yoo, A.T. Güntner, Y. Park, H.J. Rim, H.S. Lee, and W. Lee, Sensors Actuators B Chem. 283, 107 (2019).

    Article  CAS  Google Scholar 

  8. A. Mirzaei, S.G. Leonardi, and G. Neri, Ceram. Int. 42, 15119 (2016).

    Article  CAS  Google Scholar 

  9. Y.F. Sun, S.B. Liu, F.L. Meng, J.Y. Liu, Z. Jin, L.T. Kong, and J.H. Liu, Sensors 12, 2610 (2012).

    Article  CAS  Google Scholar 

  10. J.C. Murillo-Sierra, A. Hernández-Ramírez, L. Hinojosa-Reyes, and J.L. Guzmán-Mar, Chem. Eng. J. Adv. 5, 100070 (2021).

    Article  Google Scholar 

  11. T. Salthammer, S. Mentese, and R. Marutzky, Chem. Rev. 110, 2536 (2010).

    Article  CAS  Google Scholar 

  12. OSHA, Title 29. Chapter XVII. Part 1910.1048. Formaldehyde, Osha 1 (2003).

  13. D. Sun, Y. Le, C. Jiang, and B. Cheng, Appl. Surf. Sci. 441, 429 (2018).

    Article  CAS  Google Scholar 

  14. T.A. Nguyen, T.S. Jun, M. Rashid, and Y.S. Kim, Mater. Lett. 65, 2823 (2011).

    Article  CAS  Google Scholar 

  15. A. Arfaoui, S. Touihri, A. Mhamdi, A. Labidi, and T. Manoubi, Appl. Surf. Sci. 357, 1089 (2015).

    Article  CAS  Google Scholar 

  16. J.W. Geng, Y.J. Ye, D. Guo, and X.X. Liu, J. Power Sources 342, 980 (2017).

    Article  CAS  Google Scholar 

  17. R. Gakhar, and D. Chidambaram, Sol. Energy Mater. Sol. Cells 144, 707 (2016).

    Article  CAS  Google Scholar 

  18. R. Jain, Y. Lei, and R. Maric, Sensors Actuators B Chem. 236, 163 (2016).

    Article  CAS  Google Scholar 

  19. N.A.A.A.R.K. Kampara, P.K. Rai, and B.G. Jeyaprakash, Sensors Actuators B Chem. 255, 1064 (2018).

    Article  Google Scholar 

  20. R.K. Kampara, T. Sonia, and B.G. Jeyaprakash, J. Electron. Mater. 50, 2482 (2021).

    Article  CAS  Google Scholar 

  21. P. Kostrobii, B. Markovych, A. Vasylenko, M. Tokarchuk, and Y. Rudavskii, Condens. Matter Phys. 9, 519 (2006).

    Article  Google Scholar 

  22. C. Li, H. Zhou, S. Yang, L. Wei, Z. Han, Y. Zhang, and H. Pan, ACS Appl. Nano Mater. 2, 6144 (2019).

    Article  CAS  Google Scholar 

  23. L. Qiao, Y. Zeng, C.Q. Qu, H.Z. Zhang, X.Y. Hu, L.J. Song, D.M. Bi, and S.J. Liu, Phys. E Low-Dimensional Syst. Nanostructures 48, 7 (2013).

    Article  CAS  Google Scholar 

  24. G. Hodes, Chemical solution deposition of semiconductor films (New York: Marcel Dekker, 2002).

    Book  Google Scholar 

  25. N.M. Shinde, A.D. Jagadale, V.S. Kumbhar, T.R. Rana, J.H. Kim, and C.D. Lokhande, Korean J. Chem. Eng. 32, 974 (2015).

    Article  CAS  Google Scholar 

  26. J. Sungpanich, T. Thongtem, and S. Thongtem, Mater. Lett. 65, 3000 (2011).

    Article  CAS  Google Scholar 

  27. S. Wei, G. Zhao, W. Du, and Q. Tian, Vacuum 124, 32 (2016).

    Article  CAS  Google Scholar 

  28. J. Zhang, H. Lu, C. Yan, Z. Yang, G. Zhu, J. Gao, F. Yin, and C. Wang, Sensors Actuators B Chem. 264, 128 (2018).

    Article  CAS  Google Scholar 

  29. M. Imran, S.S.A.A.H. Rashid, Y. Sabri, N. Motta, T. Tesfamichael, P. Sonar, and M. Shafiei, J. Mater. Chem. C 7, 2961 (2019).

    Article  CAS  Google Scholar 

  30. D. Kukkar, K. Vellingiri, R. Kaur, S.K. Bhardwaj, A. Deep, and K.H. Kim, Nano Res. 12, 225 (2019).

    Article  CAS  Google Scholar 

  31. H. Yu, J. Li, Z. Li, Y. Tian, and Z. Yang, Powder Technol. 343, 1 (2019).

    Article  CAS  Google Scholar 

Download references

Acknowledgment

The authors extend sincere thanks to SASTRA Deemed-To-Be University for providing the infrastructural facility to carry out the research work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. G. Jeyaprakash.

Ethics declarations

Conflict of interest

The manuscript does not include any content with a conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sonia, T., Thomas, A. & Jeyaprakash, B.G. High-Temperature Formaldehyde-Sensing of WO3 Nanostructure Prepared by the SILAR Method: DFT Investigation of Gas Adsorption Properties. J. Electron. Mater. 50, 6307–6317 (2021). https://doi.org/10.1007/s11664-021-09156-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-021-09156-4

Keywords

Navigation